3 Year Report: 2005 - 2008

NORTHERN IRELAND RADIATION MONITORING GROUP

Produced by:

Geosciences Advisory Unit, National Oceanography Centre, European Way, SOUTHAMPTON, SO14 3ZH

Central Laboratory Facility

Geosciences Advisory Unit National Oceanography Centre European Way SOUTHAMPTON SO14 3ZH

Tel: 023 8059 2780 Fax: 023 8059 6450

Email: iwc@noc.soton.ac.uk

Project Co-ordinator

Dr. Ian W Croudace

Principal Radiochemist

Dr. Phillip Warwick

Senior Radiochemists

Dr. Pawel Gaca (Am & Pu isotopes, ⁹⁹Tc) Dr. Jung Suk Oh (¹⁴C, ⁹⁹Tc)

Administrators

Ms Ann Jurd Dr Nicola Holland

Please visit the NIRMG website at: www.nirmg.org.uk

CONTENTS

Summary		1
Main Conclu	sions for Results April 2005 – March 2008	
	Interpretation of Gamma Spectrometry Results	2
	Interpretation of Alpha Spectrometry Results	2
	Interpretation of Technetium-99 Analysis	2
	Interpretation of Carbon-14 Analysis	2 2 2
	Comparative Radiometric Data	2
	Long term trends	3
Northern Ire	land Radiation Monitoring Scheme	
	Northern Ireland District Councils	4
	History	4
	Objectives Participating I and Anthonising	4
	Participating Local Authorities	5
General info	rmation to assist in understanding Data tables	6
NORTHERN	I IRELAND DATA: Results April 2005 – March 2008	
-,	•	7
	Sample Catalogue by Authority Determinations by Gamma Spectroscopy: the Terrestrial Environment	7 9
	Determinations by Gamma Spectroscopy: the Marine Environment	11
	Results of Transuranic Element Determinations	14
	Monitoring the Marine Environment - Analysis for Technetium-99	15
	Monitoring the Marine Environment - Analysis for Carbon-14	16
APPENDICE	TS	
	Sampling sites April 2005 - March 2008	
Appendix A		17
	List of gamma sampling sites in Northern Ireland Map showing sampling points in Northern Ireland	17 19
	Map showing sampling points in Northern fretaild	19
Appendix B	Northern Ireland continuous monitoring network	
**	UK network of Argus continuous gamma monitoring stations	20
	Northern Ireland continuous monitoring network	21
	Comparative graph for all Northern Ireland Argus stations, April 2005 – March 2006	22
	Comparative graph for all Northern Ireland Argus stations, April 2006 – March 2007	23
	Comparative graph for all Northern Ireland Argus stations, April 2007 – March 2008	24
Appendix C	Comparative data	
	Selected Gamma Doserate Comparative Data for the Terrestrial Environment	25
	Selected Gamma Comparative Data for the Terrestrial Environment	26
	Selected Gamma Comparative Data for the Marine Environment	27
	Selected Alpha Comparative Data for the Marine Environment Selected ⁹⁹ Tc Comparative Data for the Marine Environment	31
	Selected ¹⁴ Carbon Comparative Marine Environment	32 34
	Science Carbon Comparative Marine Environment	34
Appendix D	Nuclear Environments, Incidents and Events	
	BNFL Sellafield	35
	Sellafield Discharges to the Irish Sea 1950-1999	36
	Sellafield Discharges to the Irish Sea 1993-1999 Transport of dissolved radioactivity in Western European and Arctic waters.	37 38
	Contours of ⁹⁹ Tc activities in the Irish Sea	38
	Nuclear Incidents at British Nuclear Installations	40
	1. Western In District I recom instantations	40

CONTENTS (cont.)

Appendix E	Radiation Monitoring in the United Kingdom	
	Radiation Monitoring in the United Kingdom	42
	Dose Limits: Origins & Use	42
	Derived Limits & Annual Limits of Intake	42
	Radiation from natural sources	43
	Annual exposure of the UK population from all sources of radiation	44
	Other guidelines	45
	LARnet (formerly LARRMACC)	45
	RIMNET	45
	Reference Levels for Radioactive Materials in the Environment	46
Appendix F	Laboratory Methodologies	
	Laboratory Methodologies	47
	Gamma Ray Spectroscopy	47
	Nominal Detection Limits for Radio-Isotope Analysis	47
	Spectral Data Reduction	48
	Detector Efficiency Calibration	48
	Sample Preparation for Gamma Spectroscopy	48
	Alpha Spectrometry - Introduction	49
	Transuranic elements released to the atmosphere	49
	Recognition of Transuranic Sources	49
	Typical ²³⁸ Plutonium/ ^{239,240} Plutonium Ratios	49
	Comparative Data	49
	Plutonium in Soils & Sediments	49
	Chemical Separation Procedures	50
	Alpha Spectrometry	50
	Beta Analysis OF Environmental Materials	50
	Assessment of Data Quality	51
	Quality Assurance - Gamma	52
	Quality Assurance - Alpha	53
	Quality Assurance - Beta	54
	Intercomparison Exercises	55
	Quality Control – UKAS Accreditation	56
Appendix G	Glossary of Terms	57

SUMMARY

This report for the Northern Ireland Radiation Monitoring Group (NIRMG) is a compilation of radiochemical data for foodstuffs and environmental samples collected by the participating authorities during the contract period April 2005 to March 2008. Over the three year period samples were collected from the marine, estuarine and terrestrial environment that included a variety of locally produced foodstuffs. Data for the naturally occurring radionuclides ⁴⁰K and ⁷Be are also reported since they help put the reported manmade radionuclide activities in a radiological context.

An important objective of the NIRMG Scheme is to provide background information for the area over a period of time so that any fluctuations in the radioactive content of environmental materials derived from man-made sources can quickly be identified. The relative proximity of the Sellafield nuclear site with its reported discharges highlights the interest for continuing monitoring as this is the greatest source of radioactivity concerning Northern Ireland.

The subject of radioactivity monitoring is a complex one and it is occasionally necessary to use technical language although this report endeavours to present the subject in a clear manner by providing regular explanations and a glossary of terms.

The measurements involved a detailed radiochemical analysis of environmental samples collected by the participating local authorities for a wide range of alpha, beta and gamma emitting isotopes. This approach makes a measurement of individual sample types and provides information on most man-made radioactive elements that exist in any given sample and gives a good indication of the nature and magnitude of environmentally significant radioactivity.

Very small levels of anthropogenic (man-made or artificial) radionuclides have been identified in many of the materials examined although none of the levels found is expected to be hazardous to the public. The concentrations found represent a tiny fraction of the national regulatory (cautionary) limits of radiation dose to members of the public. The maximum dose likely to be experienced by an adult living in Northern Ireland, derived from artificial sources of radioactivity, is low and within expected natural variations.

It is notable that the overall trend for most man-made radioactive contamination has been progressively downward since the 1980s.

MAIN CONCLUSIONS FOR RESULTS APRIL 2005 TO MARCH 2008

The results obtained are briefly discussed below and a full set of data is given in the section NORTHERN IRELAND DATA.

Although anthropogenic (man-made or artificial) radionuclides have been identified in many of the materials examined none of the levels found is expected to be hazardous to the public. The levels represent a small fraction of the national legislative (cautionary) limits of radiation dose to members of the public. All the contamination values are well below the Investigation Levels (i.e. 10% GDL*; NRPB, 1998).

INTERPRETATION OF GAMMA SPECTROMETRY RESULTS

The results from all environmental samples show the region to be one of low radiological significance as far as anthropogenic (man-made or artificial) radioactive materials are concerned. Anthropogenic radioisotopes of caesium and americium are seen in minute quantities in some samples from the marine environment. These are probably derived from a combination of the Chernobyl accident, weapons' testing and BNFL Sellafield (Appendix D).

Caesium isotopes in terrestrial samples (soils and vegetation) are due to past depositions from the Chernobyl cloud and weapons' testing. The levels are extremely low in all samples examined.

Data for the naturally occurring isotopes ⁴⁰K and ⁷Be are are included for interest and for comparison with data presented by other groups. Additionally, they help place the reported anthropogenic radionuclide activities in context.

INTERPRETATION OF ALPHA SPECTROMETRY RESULTS

Transuranic radionuclides, plutonium and americium, originating from Sellafield discharges and from weapons' tests are all found to be low and should be of no radiological concern. This conclusion is clearly shown by comparing the Generalised Derived Limit (GDL) data with the measured sample activity data (NORTHERN IRELAND DATA). The highest levels of contamination are found in fine-grained marine sediments.

INTERPRETATION OF TECHNETIUM-99 ANALYSES

The technetium results in samples of edible materials (lobsters, prawns and dulse seaweed) do not show any levels of ⁹⁹Tc that would lead to any radiological concerns. The main concentrators of technetium are the seaweeds *Fucus vesiculosus* and *Ascophyllum nodosum* (Table 5 Appendix C). The magnitude of the activity concentration for any particular species reflects the age of the plant, the contact time with contaminated seawater and the trends of marine currents from the eastern Irish Sea. Dulse, which is consumed by some people, is not a significant concentrator of ⁹⁹Tc. It is known that lobsters can concentrate technetium (Table 5 Appendix C) but the results so far do not indicate any significant radiological problems.

INTERPRETATION OF CARBON-14 ANALYSES

Carbon-14 has been analysed in marine fish since 2002. The results do not indicate any significant problem and compare well with data given in the Radioactivity in food and the Environment (RIFE) reports.

COMPARATIVE RADIOMETRIC DATA

Reliability and consistency are checked by comparing data from different monitoring groups or agencies (Appendix C). Quality assurance is evaluated by participating in intercomparison exercises with international and UK national organisations (eg: IAEA and NPL Appendix F).

Notes:

* GDLs are explained in Appendix E

LONG TERM TRENDS

A selected set of data are given in Figure 1 to evaluate some long term trends with samples taken from the Northern Ireland environment. This shows variation in the activity of ¹³⁷Cs with time for sediments, periwinkles and seafish. Data are in Bq/kg. The significant decline in ¹³⁷Cs activities is a result of improved clean-up of effluents for the Sellafield Site by SIXEP (Site Ion-eXchange Plant) and EARP (Enhanced Actinide Recovery Plant). The trend for ⁹⁹Tc in seaweed (Figure 2a) shows there was a significant increase in activity since 1994 but that it is currently decreasing. This reflects the reported increase and subsequent decrease in discharges of ⁹⁹Tc from Sellafield (Figure 2b).

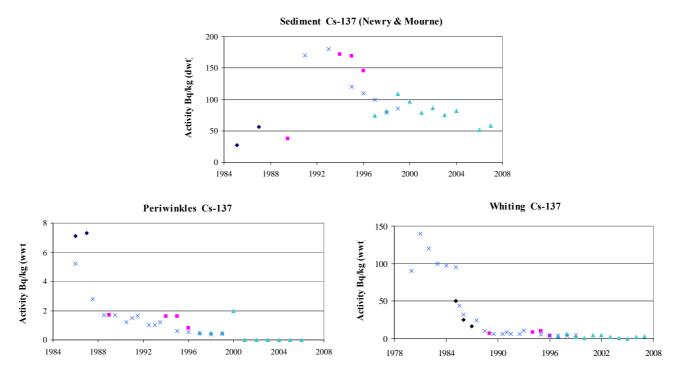
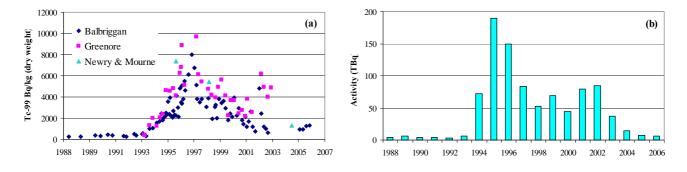



FIGURE 1: Variations in the activity of Cs-137 with time. (♦ - Surrey, ■ - Lancaster, ▲ - Southampton, × - MAFF) (data taken from MAFF, Surry University, Lancaster University and University of Southampton reports)

FIGURE 2a and 2b

2a: ⁹⁹Tc activity concentrations in *Fucus vesiculosus* sampled at Balbriggan and Greenore (Eastern Ireland) in the period 1988 – 2007. (Adapted from Smith *et al* (1997)[©]. Additional data supplied by RPII., (www.rpii.ie) for Balbriggan and Greenore, and from this and previous Northern Ireland Radiation Monitoring Group Reports for Newry & Mourne.

2b: Sellafield discharges of 99 Tc to the Irish Sea 1988-2006 (BNFL 2006)

Notes:

[®] Smith V., Ryan R.W., Pollard D., Mitchell P.I., & Ryan T.P. Temporal and geographical distribution of ⁹⁹Tc in inshore waters around Ireland following increased discharges from Sellafield. Radioprotection - Colloques, <u>32</u>, 71-77 (1997)

THE NORTHERN IRELAND RADIATION MONITORING SCHEME

NORTHERN IRELAND DISTRICT COUNCILS

HISTORY

1984	District Councils began monitoring radioactivity in the marine environment as a consequence of public concern about BNFL Sellafield.
1988	Report entitled 'The Northern Ireland Local Authority Environmental Monitoring Programme' was presented to District Councils in the Province by Dr Stephen Harris of the University of Surrey.
June 1988	Northern Ireland Working Party of Environmental Health Officers recommended that District Councils in Northern Ireland be integrated into LARRMACC (now LARnet) and that a Joint Radiation Committee be formed in the Province comprising elected members and officers from Belfast and the four Environmental Health Groupings of Councils.
Sept 1989	Inaugural meeting of the Joint Radiation Committee to become known as the 'Northern Ireland Radiation Monitoring Co-ordinating Committee' (NIRMCC)
1990 - 1996	Analytical laboratory services contracted to the University of Lancaster.
April 1996	Installation of the ARGUS Continuous Monitoring Network.
1996 - 1999	Analytical laboratory services contracted to the University of Southampton.
1999 - 2002	Analytical laboratory services contracted to the University of Southampton for a second term.
2002 - 2005	Analytical laboratory services contracted to the University of Southampton for a third term.
2002	Update of Continuous Gamma Monitoring system to ARGUS 3000
2004	Introduction of a NIRMG website: www.nirmg.org.uk
2005 - 2008	Analytical laboratory services contracted to the University of Southampton for a fourth term.
2008 - 2011	Analytical laboratory services contracted to the University of Southampton for a fifth term.

OBJECTIVES

The objectives have evolved over time as follows:

- to monitor levels of gamma radioactive contamination of marine biota and sediments in the Irish Sea as a consequence of routine radioactive discharges from the UK mainland and to ensure that doses due to Caesium-137 continue to fall.
- to monitor levels of actinides in sediments from Northern Ireland coastline and in fish/shellfish from the Irish Sea.
- to monitor levels of the beta emitter ⁹⁹Tc in shellfish and seaweeds from the Irish Sea.
- to monitor levels of contamination from gamma emitters in freshwater and terrestrial environments in Northern Ireland as a consequence of airborne releases of radioactivity such as that from Chernobyl.
- to provide independent information and data on radioactivity in the environment in order to address public concerns in Northern Ireland.
- to provide a system of radiation monitoring which is capable of adaptation to cope with abnormal/emergency releases and/or situations.

PARTICIPATING LOCAL AUTHORITIES

Northern Group

Antrim

Ballymena

Ballymoney

Carrickfergus

Coleraine

Cookstown

Larne

Magherafelt

Moyle

Newtownabbey

Southern Group

Armagh

Banbridge

Craigavon

Dungannon

Newry & Mourne

Eastern Group

Ards

Castlereagh

Down

Lisburn

North Down

Western Group

Derry

Fermanagh

Limavady

Strabane

Omagh

Belfast City Council

GENERAL INFORMATION TO ASSIST IN UNDERSTANDING DATA TABLES

The data tables that follow contain information on the numerous samples that have been taken during the year, as to the type of sample, where they were taken, their radiological content and the sampling authority. There is also information drawn from other sampling bodies and compared with results found in this report.

The tables are set out as follows:-

1. NORTHERN IRELAND DATA: Results April 2005 - March 2008

This Appendix sets out the results for the year April 2005 - March 2008. A sample catalogue shows the type of samples submitted by each Local Authority, and the gamma spectrometry results are ordered by sample type for the terrestrial and marine environment.

2 APPENDIX C: Selected Comparative Data

This Appendix sets out monitoring and sampling results from the Northern Ireland Radiation Monitoring Group for this year and compares them with results from sampling undertaken by the Food Standards Agency and British Nuclear Fuels plc (BNFL) at Sellafield.

All tables of results give the sample type, the date of sample collection and the measured level of radiological activity from man-made sources either in Becquerels per kilogram (Bq/kg) or Becquerels per litre (Bq/l). Results for the naturally occurring 40 Potassium and 7 Beryllium are given for comparison. Data showing a dash are below detection limits, whereas data with a less than value (e.g. < 1 Bq/kg) are at the detection limit and a signal is seen but is too small to quantify.

A Becquerel describes the rate at which radioactive decay takes place and corresponds to the decay or disintegration of one radioactive atom per second. It is an extremely small measure of radioactivity.

A radionuclide is an unstable form of an element that emits radioactivity. The following radionuclides are referred to in the tables (with the abbreviations used given after):

NATURAL

⁴⁰ Potassium	-	40 K
⁷ Bervllium	-	⁷ Be

ANTHROPOGENIC

_	¹³⁴ Cs
-	¹³⁷ Cs
-	⁶⁰ Co
-	⁶⁰ Co
-	⁶⁰ Co
-	⁵⁴ Mn
-	65 Zn
-	^{131}I
-	²³⁸ Pu
-	^{239,240} Pu
-	²⁴¹ Am
-	⁹⁹ Tc
	- - - - - - - -

Note

Other conventions may be used in other literature e.g. ⁹⁹Technetium may also be referred to as Technetium-99 or Tc-99.

To assist with understanding the significance of the radiological levels reported, Generalised Derived Limits (GDLs) are included after the tables, where appropriate. A full explanation of GDLs and summarised values are given in Appendix E but they are basically cautionary indicators of levels that should not be exceeded for specific materials and particularly foodstuffs..

SAMPLE CATALOGUE BY AUTHORITY

** Belfast City Council

* Belfast

23/06/2005	Sediment
22/05/2006	Sediment
22/09/2006	Sediment
01/10/2007	Sediment

** Eastern Group Environmental Health Committee

* Ards

27/06/2005	Seaweed
07/09/2005	Sediment
07/09/2005	Seaweed
07/09/2005	Shellfish
21/05/2006	Seaweed
22/09/2006	Sediment
22/09/2006	Shellfish
22/09/2006	Seaweed
14/06/2007	Seaweed
14/09/2007	Sediment
28/09/2007	Fish

* Down

Fish
Shellfish
Seaweed
Sediment
Honey
Fish
Shellfish
Fish
Shellfish
Fish
Meat
Sediment
Shellfish
Fish
Honey
Meat
Sediment

* Lisburn

23/06/2005	Water
22/05/2006	Water
15/06/2007	Water

** Northern Group Environmental Health Committee

* Balleymena

12/09/2005	Water
19/09/2007	Honey
01/10/2007	Water
25/09/2006	Water

** Northern Group Environmental Health Committee

* Carrickfergus

21/06/2005	Sediment
21/06/2005	Shellfish
07/09/2005	Sediment
18/05/2006	Sediment
18/05/2006	Shellfish
22/09/2006	Sediment
18/06/2007	Sediment
18/06/2007	Shellfish
27/09/2007	Sediment

* Moyle

27/06/2005	Shellfish
27/06/2005	Seaweed
02/09/2005	Fish
12/09/2005	Honey
12/09/2005	Seaweed
21/05/2006	Seaweed
22/05/2006	Shellfish
27/02/2007	Honey
18/06/2007	Shellfish
18/06/2007	Seaweed
28/09/2007	Fish

** Southern Group Environmental Health Committee

* Armagh

24/06/2005	Fish
09/09/2005	Fish
22/09/2006	Fish

* Banbridge

07/09/2005	Honey
------------	-------

* Craigavon

12/09/2005	Meat
22/09/2006	Meat
15/06/2007	Meat

* Dungannon

27/06/2005	Water
18/06/2007	Water

* Newry & Mourne

27/06/2005	Shellfish
18/05/2006	Shellfish
18/05/2006	Seaweed
19/05/2006	Fish
22/05/2006	Water
21/09/2006	Shellfish
25/09/2006	Sediment
15/06/2007	Fish
16/06/2007	Seaweed
26/08/2007	Shellfish
27/08/2007	Shellfish
26/09/2007	Sediment
16/06/2007	Shellfish

Sediment Seaweed Seaweed Seaweed Sediment Sediment Seaweed Sediment Seaweed

SAMPLE CATALOGUE BY AUTHORITY

** Western Group Environmental Health Committee

	Committee		*	Limavady
*	Derry			27/06/2005
	27/06/2005	Fish		12/09/2005
	27/06/2005	Shellfish		12/09/2005
	12/09/2005	Shellfish		22/05/2006
	12/09/2005	Water		25/09/2006
	22/05/2006	Shellfish		25/09/2006
	22/05/2006	Water		18/06/2007
	25/09/2006	Water		18/06/2007
	25/09/2006	Shellfish		01/10/2007
	18/06/2007	Water		01/10/2007
	01/10/2007	Fish		
	01/10/2007	Shellfish		
	01/10/2007	Water		
	01/10/2007	Fish		

TABLE 1	
MONITORING THE TERRESTIAL	ENVIRONMENT

		- LIKKESII		O 1 (1	VILLI	•							
Date	Authority	Туре	Locality								Activi	ty (Bq	/ Kg)
* Hone	y									¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* Eastern	Group Environme	ental Health Com	mittee										
12/09/2005	-	Heather	Dundrum							-	3	-	25
28/09/2007	Down	-	Dundrum							-	-	-	109
* Northe	ern Group Environ	mental Health Co	ommittee										
12/09/2005	•	Chunk honey	Cushendall							-	<1	-	7
27/02/2007 19/09/2007	Moyle Balleymena	- Heather	Cushendall 100 Railway St,							-	- 5	-	30 48
	ern Group Environ		•										
07/09/2005	_	Heather	Long Seefin							-	<1	-	16
GENER	ALISED DERIV	ED LIMITS								1200	0 ¹ 1700 ¹		
									Ac	ctivity (1	Bg/ Kg		
wetweight	t)									, (1 8		
* Meat				¹³¹ I	⁵⁴ Mn	⁶⁵ Zn	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
	n Group Environn		nmittee										
22/09/2006 01/10/2007		Venison Venison	Unknown Mount Panther	-	-	-	-	-	-	-	-	-	81 130
* Southe	ern Group Environ	mental Health Co	nmmittee										
12/09/2005	_	Venison	Unknown	_	_	_	-	_	_	_	_	-	104
22/09/2006	0	Venison	Unknown	-	-	-	-	-	-	-	69	-	113
15/06/2007	Craigavon	Venison	Unknown	-	-	-	-	-	-	-	27	-	80
GENER	ALISED DERIV	ED LIMITS											
021,214		Pig								1000	2000		
		Cattle Sheep								1000 2000	2000 3000		
		Offal								3000	4000		
		Poultry								2000	2000		
(Bq/Litre)	•									1	Activity		
* Wate	er									¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
	n Group Environn												
23/06/2005 22/05/2006		Borehole well	Lambeg Lambeg							-	-	-	54
15/06/2007		Borehole	Lambeg							-	-	-	-
* Northe	ern Group Environ	mental Health Co	ommittee										
	Balleymena	Borehole	100 Railway St,							-	-	-	-
25/09/2006 01/10/2007	Ballymena Balleymena	Borehole Potable water	Ballymena 100 Railway St,							-	-	-	-
	ern Group Environ		•										
	Dungannon	well	Fivemiletown							_	_	_	_
27/06/2005	Dungannon	Borehole	Fivemiletown							-	-	<1	-
	Newry & Mourne Dungannon	well Borehole	- Unknown							-	-	-	43

Note:													
- bel	ow limit of detection												

TABLE 1
MONITORING THE TERRESTIAL ENVIRONMENT

Date	Authority	Type	Locality				
(Bq/Litre)					Activity	r	
* Wate	r			¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* Wester	n Group Enviro	nmental Health	Committee				
12/09/2005	Derry	well	Claudy	-	-	-	-
22/05/2006	Derry	well	-	-	-	-	-
25/09/2006	Derry	Well	-	-	-	-	-
18/06/2007	Derry	Borehole	-	-	-	-	-
01/10/2007	Derry	Well	Claudy	-	-	-	-
Drin	ALISED DERIVE NEED ALISED DERIVE NEED ALISED DERIVED TO THE NEED ALISED TO THE NEED ALIS	VED LIMITS		90 1	100 2		

Note:

⁻ below limit of detection

317

155

226

134

290

147

302

3

13

14

<1

<1

TABLE 2
MONITORING THE MARINE ENVIRONMENT

MONI	TORING TH	E MARINE E	NVIRONM	EN	Γ								
Date	Authority	Type	Locality										
weight)									A	Activity	y (Bq/Kg	g wet	
* Fish										¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* Faster	n Group Environ	mental Health Con	nmittee										
23/06/2005	•	Haddock	Irish Sea							_	4	_	517
12/09/2005		Whiting	Unknown							_	<1	_	112
17/05/2006		Haddock	Irish Sea							-	<1	-	121
20/09/2006	Down	Haddock	Irish Sea							-	5	-	379
20/09/2006		Whiting	Irish Sea							-	2	-	441
18/06/2007		Haddock	Irish Sea							-	2	-	345
28/09/2007		Whiting	Irish Sea							-	5	-	528
* North	ern Group Enviro	nmental Health Co	mmittee										
02/09/2005	•	Whiting	North Channel							-	<1	-	104
02/09/2005	•	Dogfish	North Channel							-	-	-	117
28/09/2007	•	Haddock	North Channel North Channel							-	4 5	-	264
28/09/2007	•	Cod								-	3	-	523
* South	ern Group Enviro	nmental Health Co	mmittee										
24/06/2005	_	Haddock	Irish Sea							-	2	-	351
09/09/2005	_	Whiting	Unknown							-	<1	-	97
22/09/2006	Newry & Mourne	Haddock Whiting	Irish Sea Unknown							-	1 2	-	115 348
	Newry & Mourne	Haddock	Irish Sea							_	3	_	336
	•										5		330
	-	mental Health Cor											
27/06/2005	•	Haddock	Unknown							-	-	-	481
27/06/2005 01/10/2007	•	Haddock Haddock	Unknown Unknown							-	-	-	511 529
01/10/2007	•	Whiting	Unknown							_	2	_	555
01/10/2007	2011)	,,g									-		
GENERAI	LISED DERIVED L	IMITS									700		
									Acti	ivity (E	3q/Kg w	et weig	ht)
* Seaw	veed			¹³¹ I	⁵⁴ Mn	⁶⁵ Zn	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* Factor	n Croup Environ	mental Health Con	mittoo										
27/06/2005	_	Dulse	Ballywalter								1		403
27/06/2005		Fucus vesiculosus	-	-	_	-	-	-	-	_	1	_	203
07/09/2005		Fucus vesiculosus		_	_	_	-	_	_	_	_	_	234
21/05/2006		Dulse	Ballywalter	-	-	-	-	-	-	-	6	-	2460
22/09/2006	Ards	Fucus vesiculosus	•	-	-	-	-	-	-	-	<1	8	215
14/06/2007	Ards	Dulse	Ballywalter	-	-	-	-	-	-	-	-	-	1950
* North	ern Group Enviro	nmental Health Co	mmittee										
27/06/2005	•	Fucus vesiculosus		_	_	_	_	_	_	-	_	5	166
12/09/2005	•	Dulse	Cushendall	-	-	-	-	-	-	-	-	-	412
21/05/2006	Moyle	Fucus serratus	Unknown	-	-	-	-	-	-	-	<1	8	317
18/06/2007	•	Fucus vesiculosus	•	-	-	-	-	-	-	-	-	7	152
18/06/2007	Moyle	Dulse	Ballintoy	-	-	-	-	-	-	-	3	-	2120
* South	ern Group Enviro	nmental Health Co	mmittee										
19/05/2006	Novem & Mourne	Enous vasionlesus	Warrannaint								-1		217

Note:.

- below limit of detection

18/05/2006 Newry & Mourne

16/06/2007 Newry & Mourne

12/09/2005 Limavady

22/05/2006 Limavady

25/09/2006 Limavady

18/06/2007 Limavady

01/10/2007 Limavady

Fucus vesiculosus Warrenpoint

Fucus vesiculosus Balls Point

Fucus serratus

* Western Group Environmental Health Committee

Warrenpoint

TABLE 2
MONITORING THE MARINE ENVIRONMENT

Date Authority Type Locality

Activity (Bq/ Kg dry weight)

* Sediment			²⁴¹¹ Am	⁵⁴ Mn	⁶⁵ Zn	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* Belfast City Council												
23/06/2005 Belfast	Silt	Belfast Lough	7	_	-	_	_	_	-	16	4	482
22/05/2006 Belfast	Silt	Belfast Lough	7	_	_	_	_	_	-	18	_	483
22/09/2006 Belfast	Coastal silt	Belfast Lough	7	-	-	-	-	<1	-	18	5	471
01/10/2007 Belfast	Coastal silt	Belfast Lough	-	-	-	-	-	-	-	19	3	-
* Eastern Group Environm	ental Health (Committee										
07/09/2005 Ards	Silt	Millisle	_	_	-	_	_	_	-	6	_	332
12/09/2005 Down	-	Killough Harbour	-	-	-	-	-	_	-	6	5	413
22/09/2006 Ards	Silt	Millisle	<1	-	-	_	-	_	-	5	<1	337
25/09/2006 Down	Silt	Killough Harbour	1	-	-	-	-	-	-	10	7	453
14/09/2007 Ards	Silt	Millisle	-	-	-	-	_	_	-	6	_	422
01/10/2007 Down	Silt	Killough Harbour	-	-	-	-	-	-	-	11	13	555
* Northern Group Environ	mental Health	n Committee										
21/06/2005 Carrickfergus	Silt	Carrickfergus	2	-	-	-	-	-	-	5	6	224
07/09/2005 Carrickfergus	Silt	Carrickfergus	3	-	-	-	-	-	-	8	6	272
18/05/2006 Carrickfergus	Silt	Carrickfergus	2	-	-	-	-	-	-	6	7	249
22/09/2006 Carrickfergus	Coastal silt	Carrickfergus	2	-	-	-	-	-	-	5	3	255
18/06/2007 Carrickfergus	Coastal silt	Carrickfergus	-	-	-	-	-	-	-	5	10	256
27/09/2007 Carrickfergus	Coastal silt	Carrickfergus	-	-	3	-	-	-	-	7	5	225
* Southern Group Environi	mental Health	Committee										
25/09/2006 Newry & Mourne	Intertidal silt	Warrenpoint	-	-	-	-	-	-	-	52	35	619
26/09/2007 Newry & Mourne	Intertidal silt	Warrenpoint	-	-	-	-	-	-	-	58	70	622
* Western Group Environn	nental Health	Committee										
27/06/2005 Limavady	Silt	Carrickhugh Bridg	ge 1	-	-	-	-	-	-	7	17	201
12/09/2005 Limavady	Silt	Carrickhugh Bridg	ge -	-	-	-	-	-	-	18	241	667
25/09/2006 Limavady	Silt	Unknown	-	-	-	-	-	-	-	24	351	672
18/06/2007 Limavady	Silt	Carrickhugh Bridg	ge -	-	-	-	-	-	-	6	44	707
01/10/2007 Limavady	Silt	Carrickhugh Bridg	ge -	-	-	-	-	-	-	4	15	344

GENERALISED DERIVED LIMITS

Activity (Bq/ Wet weight)

2000

* Shellfish			^{131}I	⁵⁴ Mn	⁶⁵ Zn	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	^{40}K
* Eastern Group Environ	mental Health	1 Committee										
23/06/2005 Down	Lobster	Irish Sea	-	-	-	-	-	-	-	-	-	60
23/06/2005 Down	Mussels	St Johns Point	-	-	-	-	-	-	-	-	-	15
23/06/2005 Down	Lobster	Irish Sea	-	-	-	-	-	-	-	-	-	327
07/09/2005 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	-	-	48
16/05/2006 Down	Lobster	Ballyhoman	-	-	-	-	-	-	-	<1	-	101
17/05/2006 Down	Mussels	Unknown	-	-	-	-	-	-	-	<1	2	43
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	-	-	188
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	-	-	19
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	-	-	25
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	7	-	-
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	6	677	-	260
22/09/2006 Ards	Winkles	Ballyhalbert	-	-	-	-	-	-	-	-	-	-
18/06/2007 Down	Mussels	Killough Harbour	-	-	-	-	-	-	-	-	-	-
18/06/2007 Down	Lobster	Unknown	-	-	-	-	-	-	-	-	-	418

Note:.

- below limit of detection

TABLE 2
MONITORING THE MARINE ENVIRONMENT

Date	Authority	Type	Locality										
									Ac	ctivity (1	Bq/ We	t weigh	ıt)
* Shell	fish			¹³¹ I	⁵⁴ Mn	⁶⁵ Zn	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co	¹³⁴ Cs	¹³⁷ Cs	⁷ Be	⁴⁰ K
* North	ern Group Enviro	nmental Healt	th Committee										
21/06/2005	Carrickfergus	Mussels	Carrickfergus	-	-	-	-	-	-	-	<1	-	14
27/06/2005	Moyle	Lobster	Waterfoot	-	-	-	-	-	-	-	2	-	381
18/05/2006	Carrickfergus	Mussels	Carrickfergus	-	-	-	-	-	-	-	<1	-	-
22/05/2006	•	Lobster	Northern Channel	-	-	-	-	-	-	-	-	-	76
18/06/2007	•	Lobster	Northern Channel	-	-	-	-	-	-	-	-	-	283
18/06/2007	Carrickfergus	Mussels	Carrickfergus	-	-	-	-	-	-	-	-	-	172
* Southe	ern Group Enviro	nmental Healt	h Committee										
27/06/2005	Newry & Mourne	Mussels	Ballyedmond	-	-	-	-	-	-	-	-	<1	-
18/05/2006	Newry & Mourne	Mussels	Ballyedmond	-	-	-	-	-	-	-	<1	2	90
21/09/2006	Newry & Mourne	Lobster	Irish Sea	-	-	-	-	-	-	-	3	-	421
16/06/2007	Newry & Mourne	Mussels	Warrenpoint	-	-	-	-	-	-	-	-	-	244
	Newry & Mourne	Mussels	Warrenpoint	-	-	-	-	-	-	-	2	-	233
27/08/2007	Newry & Mourne	Lobster	Irish Sea	-	-	-	-	-	-	-	2	-	452
* Wester	rn Group Environ	mental Health	1 Committee										
27/06/2005	Derry	Mussels	Longfield	-	-	-	-	-	-	-	-	-	18
12/09/2005	Derry	Mussels	Derry	-	-	-	-	-	-	-	-	-	32
22/05/2006	Derry	Mussels	Longfield	-	-	-	-	-	-	-	-	-	104
25/09/2006	Derry	Mussels	Longfield	-	-	-	-	-	-	-	-	-	152
01/10/2007	Derry	Mussels	Longfield	-	-	-	-	-	-	-	-	-	221
GENER	ALISED DERIV	ED LIMITS	1										
SEI (EIK	LLISED DEM	Molluses	•							3000	4000		
		Crustacea								3000	4000		

Note:.

⁻ below limit of detection

TABLE 3
RESULTS OF TRANSURANIC ELEMENT DETERMINATIONS

Date	Authority	Type	Locality

				Activity (Bq/kg wet weight)		
				²³⁸ Pu	^{239,240} Pu	²⁴¹ Am
* Belfa	ast City Council					
23.06.05	Belfast	Silt	Belfast Lough	1.65	8.73	10.32
22.05.06 01.10.07	Belfast Belfast	Silt Coastal Silt	Belfast Lough Belfast Lough	1.64 0.37	6.50 2.95	8.35 3.77
* East	ern Group Environ	mental Health Com	mittee			
Last	ern Group Environ	mentar reater com	intec			
23.06.05		Mussels	St John's Point	< 0.01	0.09	0.07
07.09.05	Ards	Silt*	Millisle	0.18	1.51	1.78
17.05.06 22.09.06		Mussels Silt*	- Millisle	0.06 0.33	0.12 2.63	0.33 0.91
18.06.07		Mussels	Killough Harbour	0.33	0.15	0.91
28.09.07		Silt*	Millisle	0.25	1.14	1.73
* Nort	hern Group Enviro	onmental Health Cor	nmittee			
21.06.05	Carrickfergus	Silt	Carrickfergus	0.47	3.42	3.13
21.06.05	Carrickfergus	Mussels	Carrickfergus	0.05	0.34	0.55
	Carrickfergus	Silt	Carrickfergus	0.74	3.05	4.89
	Carrickfergus	Mussels	Carrickfergus	0.07	0.28	0.63
18.06.07	Carrickfergus	Silt	Boneybefore	0.50	3.03	5.85
18.06.07	Carrickfergus	Mussels	Boneybefore	0.06	0.29	0.49
* Sout	hern Group Enviro	onmental Health Cor	nmittee			
	Newry & Mourne	Mussels	Ballyedmond	0.04	0.32	0.08
	Newry & Mourne	Mussels	Warrenpoint	0.03	0.10	0.11
26.09.07	Newry & Mourne	Intertidal Silt*	Warrenpoint	1.30	9.71	6.21
* West	tern Group Enviro	nmental Health Com	nmittee			
27.06.05	Limavady	Silt*	Carrickhugh Bridge	0.31	2.29	2.85
12.09.05	Derry	Mussels	Derry	-	0.03	0.08
22.05.06	•	Mussels	Longfield	0.06	0.07	0.32
25.09.06	•	Mussels	Longfield	0.01	0.07	0.08
01.10.07	Limavady	Silt*	Carrickhugh Bridge	0.20	1.43	1.91

Note:

below limit of detection

[•] sediment reported as dry weight

18.06.07 Down

18.06.07 Down

14.06.07 Ards

28.09.07 Ards

⁹⁹Tc

28

10

40

TABLE 4 ANALYSIS FOR TECHNETIUM-99

* Eastern Group Environmental Health Committee

Date	Authority	Type	Locality
Date	Authority	1 y pc	Locant

Activity (Bq/kg wet weight)

27.06.05	Ards	Dulse	Ballywalter	4
23.06.05	Down	Lobster	St John's Point	3
23.06.05	Down	Mussels	St John's Point	9
07.09.05	Ards	Fucus vesiculosus	Ballyhalbert	181
16.05.06	Down	Lobster	Ballyhoman	99
17.05.06	Down	Mussels	-	18
21.05.06	Ards	Dulse	Ballywalter	22
22.09.06	Ards	Fucus vesiculosus	Ballyhalbert	173

Killough Harbour

St John's Point Ballywalter

Millisle

* Northern Group Environmental Health Committee

Mussels

Lobster

Dulse

Silt

21.06.05	Carrickfergus	Mussels	Carrickfergus	142
27.06.05	Moyle	Lobster	Waterfoot	234
27.06.05	Moyle	Fucus vesiculosus	Ballintoy	179
12.09.05	Moyle	Dulse	Cushendall	2
18.05.06	Carrickfergus	Mussels	Carrickfergus	88
22.05.06	Moyle	Lobster	Northern Channel	69
21.05.06	Moyle	Fucus Serratus	-	220
18.06.07	Moyle	Dulse	Ballintoy	11
18.06.07	Moyle	Fucus Serratus	Ballintoy	94
18.06.07	Moyle	Lobster	Northern Channel	6
18.06.07	Carrickfergus	Mussels	Carrickfergus	65

* Southern Group Environmental Health Committee

27.06.05	Newry & Mourne	Mussels	Ballyedmond	26
27.06.05	Newry & Mourne	Fucus vesiculosus	Ballyedmond	1332
16.06.07	Newry & Mourne	Mussels	Warrenpoint	39
16.06.07	Newry & Mourne	Fucus Serratus	Warrenpoint	48
26.09.07	Newry & Mourne	Mussels	Warrenpoint	39
27.09.07	Newry & Mourne	Lobster	Irish Sea	85

* Western Group Environmental Health Committee

27.06.05	Derry	Mussels	Longfield Bank	9
27.06.05	Limavady	Fucus vesiculosus	Balls Point	23
12.09.05	Derry	Mussels	Derry	5
12.09.05	Limavady	Fucus vesiculosus	Balls Point	36
22.05.06	Derry	Mussels	Longfield	12
22.05.06	Limavady	Fucus vesiculosus	Balls Point	18
25.09.06	Derry	Mussels	Longfield	6
18.06.07	Limavady	Fucus vesiculosus	Balls Point	9
01.10.07	Derry	Mussels	Longfield	4
01.10.07	Limavady	Fucus vesiculosus	Balls Point	52

TABLE 5

ANALYSIS FOR CARBON-14

Distri	A 41 . 34	T	T P4	
Date	Authority	Type	Locality	
				Activity (Bq/kg wet weight)
				¹⁴ C
* East	ern Group Environ	mental Health Comn	nittee	
23.06.05	Down	Haddock	Irish Sea	42
17.05.06	Down	Haddock	Irish Sea	32
18.06.07	Down	Haddock	Irish Sea	70
* Nort	tharn Croup Enviro	nmental Health Com	mittaa	
11011	inern Group Enviro	mmentai iicaitii com	imittee	
02.09.05	Moyle	Dogfish	North Channel	23
28.09.07	Moyle	Haddock	North Channel	49
* Sout	harn Craun Envira	nmental Health Com	mittoo	
Sout	mern Group Enviro	iiiieitai Heattii Coiii	mittee	
24.06.05	Armagh	Haddock	Irish Sea	32
15.06.07	Newry & Mourne	Haddock	Irish Sea	39
* Wes	tern Group Environ	mental Health Comi	nittee	
27.06.05	Derry	Haddock	Off Malin Head	34
01.10.07		Haddock	Off Malin Head	34
Notes:				

Measurements given in 'Radioactivity in Food and the Environment, 2001' for fish in the Irish Sea are in range 41 - 120 Bq/kg wet weight

TABLE 6 INSTANTANEOUS GAMMA MONITORING

below limit of detection

The following data were collected with samples submitted for gamma and alpha analysis.

	C		1	
				Doserate µGy/hr
* Belfa	st City Council			
23.06.05	Belfast	Silt	Belfast Lough	0.072
* Easte	ern Group Environ	mental Health Com	mittee	
22.09.06	Ards	Sediment	Millisle	0.06
* South	nern Group Enviro	nmental Health Co	mmittee	
25.09.06	Newry & Mourne	-	Warrenpoint	0.09
18.06.07	Newry & Mourne	-	Warrenpoint	0.09
* XX 74	C F		•44	
* West	ern Group Enviror	mental Health Con	nmittee	
27.06.05	Limavady	Silt	Carrickhugh Bridge	0.052
12.09.05	Limavady	Silt	Carrickhugh Bridge	0.048
25.05.06	Limavady	Silt	Carrickhugh	0.051

24

Shellfish, seaweed

Newry & Mourne

NORTHERN IRELAND SAMPLE SITES

(The numbered sites are shown on the map on the following page) ¹⁴C ⁹⁹Tc Map Authority **Details** Locality Grid Gamma Alpha no. reference **Belfast City Council** Sediment Belfast Belfast Lough J 350 794 **Eastern Group Environmental Health Committee** 2 Sediment Ards Millisle J 601 755 ✓ ✓ 3 Dulse Ards Ballywalter J 635 690 4 Ballyhalbert Seaweed, shellfish Ards J 661 620 Fish, seaweed ✓ ✓ Ards **√** 5 Honey Down Dundrum J 409 373 ✓ 6 Shellfish Down St John's Point J 530 330 ✓ ✓ 7 Sediment, shellfish Killough Harbour Down J 538 366 ✓ ✓ 8 Shellfish Down Ballyhoman J 580 380 Meat Down ✓ 9 Venison Down Mount Panther Estate J 410 377 Fish, seaweed, shellfish Down 10 Water Lisburn Lambeg J 283 664 **Northern Group Environmental Health Committee** Water Balleymena Balleymena D 105 024 12 Sediment Carrickfergus Carrickfergus J 429 882 ✓ ✓ ✓ 13 Shellfish Carrickfergus Carrickfergus J 375 842 ✓ ✓ 14 Dulse Cushendall Moyle D 244 285 ✓ Fish North Channel 15 Moyle D 010 550 ✓ 16 Seaweed Moyle **Ballintoy** D 037 457 Shellfish Waterfoot Moyle D 248 265 17 ✓ 18 Shellfish Northern Channel D 260 410 Moyle ✓ ✓ Seaweed Moyle 19 Honey Moyle Cushendall D 234 275 **Southern Group Environmental Health Committee** * Armagh ✓ 20 Heather honey Banbridge Long Seefin Water Fivemiletown 21 Dungannon ✓ Water Dungannon ✓ Meat Craigavon Water Newry & Mourne ✓ Fish, shellfish Newry & Mourne Irish Sea 22 Seaweed, sediment J 142 180 Newry & Mourne Warrenpoint ✓ 23 Shellfish Newry & Mourne Warrenpoint J 153 183

Ballyedmond

✓

J 212 145

NORTHERN IRELAND SAMPLE SITES

(The numbered sites are shown on the map on the following page)

Map no.	Authority	Details	Locality	Grid reference	Gamma	Alpha	⁹⁹ Tc	14C
Wester	rn Group Enviro	nmental Health (Committee					
*	Water	Derry	*	*	✓			
25	Shellfish	Derry	Longfield Bank	C 545 235	✓	✓	✓	
26	Shellfish	Derry	Derry	C 545 245	✓	✓	✓	
27	Water	Derry	Claudy	C 553 043	✓			
*	Fish, shellfish, seaweed	Derry	*	*	✓			✓
28	Sediment	Limavady	Carrickhugh Bridge	C 603 230	✓	✓		
29	Seaweed	Limavady	Balls Point	C 644 300	✓		✓	

^{*} grid reference unknown

FIGURE 3

NORTHERN IRELAND SAMPLING SITES APRIL 2005 – MARCH 2008

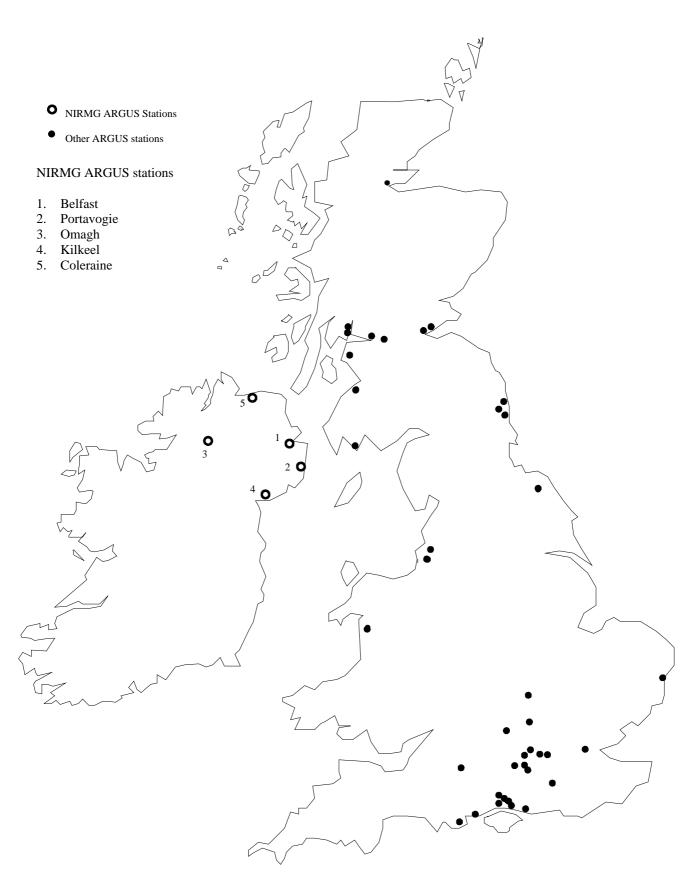


FIGURE 4: THE UK NETWORK OF ARGUS CONTINUOUS GAMMA MONITORING STATIONS (www. environment.org.uk)

NORTHERN IRELAND CONTINUOUS MONITORING ARGUS NETWORK

In 1994 the Northern Ireland Radiation Monitoring Group (NIRMG) investigated the feasibility of installing a network of gamma radiation monitoring stations within district councils in Northern Ireland. These unattended stations would be required to provide reliable regularly updated information about background gamma radiation and, in the event of an increase in background, would be required to provide an automatic comprehensive alert warning.

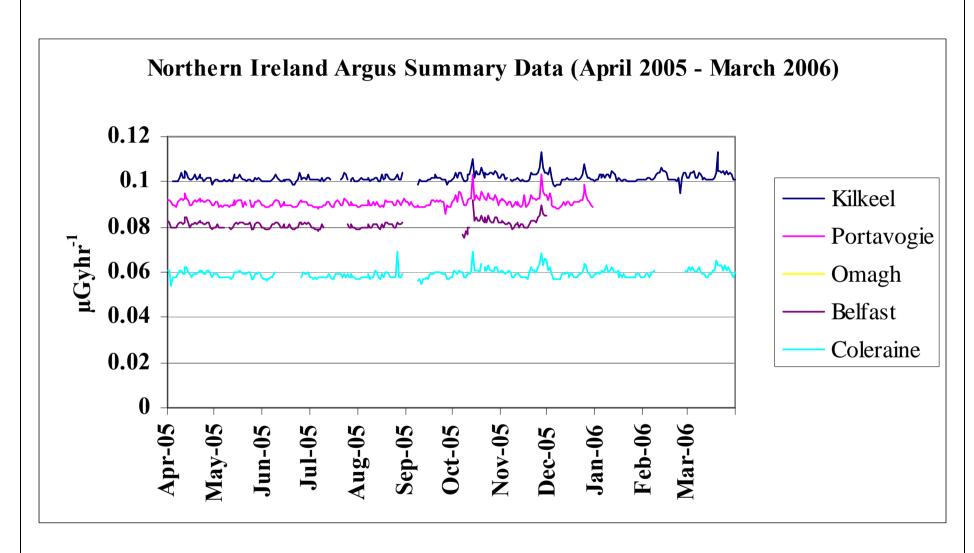
Representatives from NIRMG visited a number of sites in the North-East of England where a variety of installed systems were available in a geographically small area. It was recognised that, in addition to providing information on background gamma radiation and alerting in an emergency, provision of an automated system would significantly reduce the staff resources required for the manual operation of the Mini 6-80 instruments for instantaneous gamma monitoring of background.

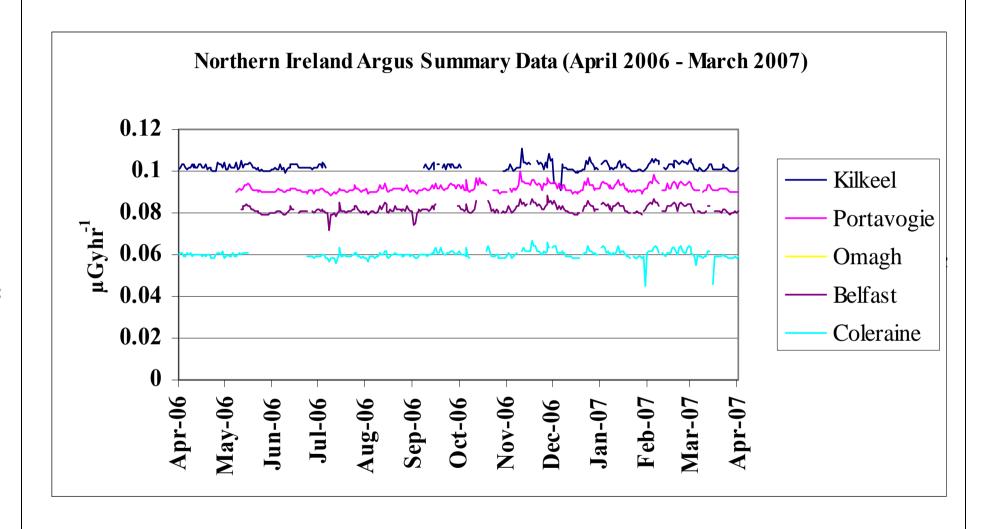
Following a report, of this visit a specification of the equipment needed for a networked system was prepared and quotations were sought from prospective suppliers in Great Britain. A detailed assessment of each system was undertaken together with costs and a recommendation made to NIRMG that Argus be employed to install a network of five outstations in Northern Ireland linked to a host computer based in Belfast.

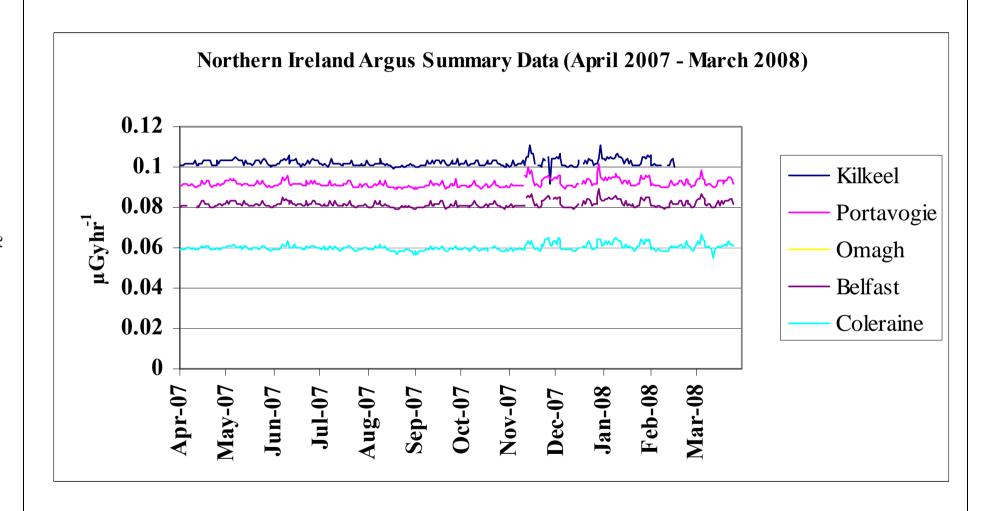
In April 1996 the equipment was installed and made operational at the sites named below and a 24-hour communications procedure was established to provide notification of an alert from any outstation to a designated contact officer.

Authority	Site of Outstation
Belfast City Council	Dunbar Street, Belfast
EGEHC	Harbour Master's Office, Portavogie
WGEHC	Mountjoy Road, Omagh
SGEHC	Sports Centre, Kilkeel
Northern Group Systems	Cloonavin, Coleraine

Argus Data Logging


In the original ARGUS installation each outstation had its own remote station management software allowing access to background gamma readings accumulated over successive ten-minute periods. The stations also transferred results to the host computer in Belfast by modem connection. Using a Windows-based software package, ADVENT, data accessed remotely by PC could be viewed for each outstation. Local data were downloaded into spreadsheet or as a graph plotting average readings at two hourly intervals in nanograys/hour. The host computer in Belfast also checked and maintained each outstation at all times, ensuring optimum reliability and data integrity.


ARGUS 3000


A new much improved ARGUS system is now available via the Internet (www.environment.org.uk). After 24 hours all data are available on the Internet through a standard browser. Parameters for alert levels may be updated by individual station owners, text messages sent to nominated phones and up-to-the-minute data may be viewed on a secure private website. The system is built with standard PC components and can be maintained by in-house IT personnel. Any software updates and improvements will be available from the Internet. Northern Ireland has almost completed the upgrade to three systems that now have meteorological probes providing weather data as well as a gamma detector. Coleraine and Portavogie completed the upgrade during the reporting period, and Omagh is expecting to come online shortly.

Data for April 2005 - March 2008

Data downloaded from the central database at www.environment.org.uk are summarised in the following three graphs.

Comparative Data APPENDIX C

TABLE 1

SELECTED GAMMA DOSERATE COMPARATIVE DATA

	Ground type	Locality	Activity (nGyh ⁻¹)
1.	Silt	Limavady (9/05)	48
2.	Sand	Sellafield (2004 – mean of 4 measurements)	78
	Salt marsh	Ravenglass - Carlton Marsh (2004 – mean of 4 measurements)	170
	Mud/sand	Ravenglass - Raven Villa (2004 - mean of 4 measurements)	110
	Mussel bed	Drigg Barn Scar (2004 - mean of 4 measurements)	83
	Sand	Whitehaven – outer harbour (2005)	110
	Sand	Sellafield beach (2005 – mean of 2 measurements)	83
	Salt marsh	Ravenglass - Carleton Marsh (2005)	160
	Salt marsh/mud	Ravenglass - Raven Villa (2005 - mean of 7 measurements)	140
	Mussel bed	Drigg Barn Scar (2005 - mean of 4 measurements)	85
	Sand	Sellafield beach (2006 – mean of 2 measurements)	90
	Salt marsh/mud	Ravenglass - Carlton Marsh (2006 - mean of 2 measurements)	150
	Salt Marsh/Mud	Ravenglass - Raven Villa (2006 – mean of 3 measurements)	150
	Mussel bed	Drigg Barn Scar (2006 - mean of 4 measurements)	83
	Sand	Whitehaven – outer harbour (2006 - mean of 3 measurements)	100
3	Silt	Belfast Lough (1/97)	70
	Silt	Warrenpoint, Newry & Mourne (6/97)	88
	Silt	Derry (9/97)	68
	Silt	Millisle (11/97)	55
	Silt	Carrickhugh, Limavady (1/98)	50
	Silt	Warrenpoint, Newry & Mourne (6/98)	80
	Silt	Longfield Bank, Limavady (11/99)	40
	Silt	Warrenpoint, Newry & Mourne (3/00)	80
	Silt	Culmore Point, Derry (3/00)	50
	Sand	Butterlump Rock, Ballyhalbert (4/01)	100
	Silt	Warrenpoint, Newry & Mourne (9/02)	90
	Silt	Warrenpoint, Newry & Mourne (9/02)	90
	Silt	Belfast Lough (6/03)	70
	Silt	Limavady (6/04)	70
4.	Mud/Silt	Ravenglass (2004 – mean of 4 measurements)	150
т.	Mud/silt	Whitehaven - outer harbour (2004 – mean of 12 measurements)	140
	Dunes & grass banks	Sellafield (2004)	110
	Saltmarsh	Ravenglass - Raven Villa (2006 – mean of 5 measurements)	200
	Mud/silt	Whitehaven - outer harbour (2006 – mean of 12 measurements)	130
	Sand	Sellafield (2006 – mean of 12 measurements)	140
		Demanded (2000 mount of 12 moundatements)	140

Notes:

1.

- Results from Northern Ireland Radiation Monitoring Group (2005 2008)
 Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006)
 Results from previous Northern Ireland Radiation Monitoring Group Reports
 Results from Annual Report of BNFL Sellafield (2004 & 2006) 2.
- 3.

Comparative Data APPENDIX C

TABLE 2 SELECTED GAMMA COMPARATIVE DATA FOR THE TERRESTRIAL **ENVIRONMENT**

	Category	Locality	Activity (Bq/kg wet weight)
MEA	Г		¹³⁷ Cs
1.	Venison	Craigavon (9/05)	-
	Venison	Down (9/06)	-
	Venison	Craigavon (9/06)	69
	Vension	Craigavon (6/07)	27
3.	Venison	Bangor (10/99)	<1
	Venison	Fermanagh (10/99)	<1
	Venison	Fermanagh (10/00)	31
	Venison	Colebrook(10/01)	<1
	Venison	Ballymena (01/02)	_
	Venison	North Down (6/02)	<1
	Venison	Craigavon (6/02)	<1
	Venison	Fermanagh (6/03)	8
4.	Beef	Braystones (2004)	0.26
	Mutton	Braystones (2004)	3.2
	Venison	Calder Bridge (2004)	24
GENE	ERALISED DERIV		
		Sheep Cattle	3000 2000

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

- 1. Results from Northern Ireland Radiation Monitoring Group (2005 - 2008)
- Results from previous Northern Ireland Radiation Monitoring Group Reports Results from Annual Report of BNFL Sellafield (2004 & 2006) 3.
- 4.
- below the limit of detection
- <1 activity seen but near the detection limit
- not analysed na
- not recorded.

Comparative Data APPENDIX C

TABLE 3
SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

	Category Locality		Activity (Bq/kg wet weight)		
			¹³⁷ Cs	⁶⁰ Co	¹³¹ I
FISH				00	-
1	Haddock	Irish Sea (06/05)	<1	nr	nr
	Whiting	North Channel (09/05)	<1	nr	nr
	Haddock	Irish Sea (05/06)	1	nr	nr
	Whiting	Irish Sea (09/06)	2	nr	nr
	Haddock	Irish Sea (06/07)	3	nr	nr
	Cod	North Channel (09/07)	5	nr	nr
2.	Plaice	Sellafield coastal area (2004 - mean of 7 measurements)	5.0	< 0.11	Nr
	Cod	Northern Ireland N Coast (2004 – mean of 3 measurements)	2.2	< 0.06	nr
	Whiting	Northern Ireland Portavogie (2004– mean of 3 measurements)	1.4	< 0.05	nr
	Plaice	Sellafield coastal area (2005 - mean of 5 measurements)	4.8	< 0.11	nr
	Whiting	Northern Ireland Kilkeel (2005– mean of 4 measurements)	0.42	< 0.12	nr
	Cod	Northern Ireland North Coast (2005– mean of 2 measurements)	1.8	< 0.05	nr
	Plaice	Sellafield coastal area (2006 - mean of 4 measurements)	4.5	< 0.18	nr
	Whiting	Northern Ireland Kilkeel (2006)	0.36	< 0.06	nr
	Cod	Northern Ireland Kilkeel (2006– mean of 3 measurements)	2.9	< 0.07	nr
3.	Whiting	Kilkeel (01/98)	3	_	_
	Ling	Kilkeel (03/99)	8	<1	-
	Whiting	Unknown (03/01)	5	-	-
	Whiting	Unknown (10/99)	<1	-	-
	Whiting	Unknown (10/01)	1	_	-
	Whiting	Irish Sea (01/02)	5	-	-
	Whiting	Irish Sea (01/02)	<1	-	-
	Haddock	Northern Ireland (09/03)	<1	-	-
	Cod	Northern Ireland (06/02)	1	-	-
	Haddock	North Channel (09/03)	<1	-	-
	Whiting	North Channel (09/04)	<1	-	-
4.	Plaice	St Bees (2004)	4.1	< 0.20	nr
	Cod	St Bees (2004)	6.0	< 0.25	nr
	Plaice	Sellafield Coastal Area (2006)	3.6	nr	nr
	Cod	Sellafield Coastal Area (2006)	6.3	nr	nr
GENE	RALISED DERIV	ED LIMITS	800	1290*	500

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

* Calculated from NRPB-GS7. They are for an adult critical group assuming a consumption rate of 50kg/year and an effective dose limit of 1mSv/year.

- 1. Results from Northern Ireland Radiation Monitoring Group (2005 2008)
- Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006)
- 3. Results from previous Northern Ireland Radiation Monitoring Group Reports
- 4. Results from Annual Report of BNFL Sellafield (2004 & 2006)
- below the limit of detection
- <1 activity seen but near the detection limit</p>
- na not analysed
- nr not recorded.

Comparative Data APPENDIX C

C	ategory	Locality	Activity (Bq/l	kg wet we	eight)
			¹³⁷ Cs	⁶⁰ Co	¹³¹ I
SEAWEE	D				
l. D	Oulse	Ballywater (06/05)	1	-	
F	ucus vesiculosus	Balls Point (09/05)	6	-	
F	ucus vesiculosus	Warrenpoint (05/06)	<1	-	
F	ucus vesiculosus	Ballyhalbert (09/06)	<1	-	
F	ucus serratus	Warrenpoint (06/07)	1	-	
F	ucus vesiculosus	Balls Point (10/07)	-	-	-
2. F	ucus vesiculosus	Sellafield (2004 – mean of 4 measurements)	69	12	n
F	ucus vesiculosus	Northern Ireland, Ardglass (2004 – mean of 2 measurements)	0.89	< 0.07	n
F	ucus serratus	Northern Ireland, Portrush (2004 – mean of 4 measurements)	< 0.10	< 0.25	n
S	eaweed	Sellafield (2005– mean of 2 measurements)	16	29	n
F	ucus vesiculosus	Northern Ireland, Ardglass (2005 – mean of 3 measurements)	0.49	< 0.20	n
F	ucus serratus	Northern Ireland, Portrush (2005 – mean of 4 measurements)	< 0.08	< 0.07	n
S	eaweed	Sellafield (2006 – mean of 2 measurements	5.8	8.7	n
F	ucus vesiculosus	Northern Ireland, Ardglass (2006 – mean of 2 measurements)	0.84	< 0.20	n
F	ucus spp	Northern Ireland, Portrush (2006 – mean of 4 measurements)	< 0.07	< 0.08	nı
3. F	ucus vesiculosus	Warrenpoint (11/99)	2	-	347
F	ucus serratus	Ballycastle Bay (4/01)	<1	-	
_	ucus vesiculosus	Warrenpoint (11/00)	1	-	<1
	ucus serratus	Warrenpoint (3/00)	2	-	
_	Oulse	Killough (03/00)	1	-	< 1
	ucus serratus	Ballycastle Bay (04/01)	<1	-	
F	ucus vesiculosus	Killough Harbour (01/02)	<1	-	
F	ucus vesiculosus	Warrenpoint (6/02)	1	-	
_	Pulse	Ballycastle (09/03)	2	-	< 1
D	Pulse	Colliery Bay (09/04)	-	-	<]
4. F	ucus vesiculosus	Seascale (2004)	3.9	6.3	nı
F	ucus vesiculosus	Nethertown (2006)	5.1	9.8	n

^{1.}

Results from Northern Ireland Radiation Monitoring Group (2005 - 2008)
Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006)
Results from previous Northern Ireland Radiation Monitoring 2.

^{3.}

Results from Annual Report of BNFL Sellafield (2004 & 2006) 4.

below the limit of detection activity seen but near the detection limit <1

na not analysed

not recorded. nr

Comparative Data APPENDIX C

TABLE 3 (Cont)

SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

	Category	Locality	Activity (Bq/kg we	t weight)
			¹³⁷ Cs	60Co
SEL	DIMENT			
1.	Silt	Carrickfergus (06/05)	5	_
	Silt	Limavady (09/05)	18	-
	Silt	Belfast Lough (05/06)	18	-
	Silt	Belfast Lough (09/06)	18	<1
	Silt	Carrickfergus (06/05)	5	-
	Intertidal silt	Warrenpoint (09/07)	58	-
2	Sand	Sellafield (2004 – mean of 4 measurements)	82	4
	Mud	Ravenglass, Carleton Marsh (2004 – mean of 4 measurements)	380	3.4
	Sand	Northern Ireland, Portrush (2004 – mean of 2 measurements)	< 0.6	< 0.46
	Sand	Sellafield (2005 – mean of 4 measurements)	60	4.5
	Mud	Ravenglass, Carleton Marsh (2005 – mean of 3 measurements)	2000	27
	Sand	Northern Ireland, Portrush (2005 – mean of 2 measurements)	< 0.4	0.70
	Sand	Sellafield (2006 – mean of 4 measurements)	59	3.4
	Mud	Ravenglass, Carleton Marsh (2006 – mean of 4 measurements)	460	24
	Sand	Northern Ireland, Portrush (2006 – mean of 2 measurements)	< 0.6	< 0.39
3	Silt	Belfast Lough(10/99)	44	-
	Silt	Millisle(10/99)	8	-
	-	Belfast Lough (11/00)	-	-
	-	Warrenpoint (3/01)	-	-
	-	Warrenpoint(01/02)	86	-
	-	Coshowen(01/02)	86	-
	Silt	Belfast Lough (09/02)	33	-
	Silt	Millisle (06/02)	6 26	-
	-	Belfast Lough (06/03) Warrenpoint (09/03)	26 75	-
	-	Carrickhugh (06/04)	5	-
	-	Carrickfergus (09/04)	6	-
	-	California (09/04)	Ü	-
4.	silt	Ravenglass - Raven Villa (2004)	200	23
	silt	Whitehaven - Outer 2 South (2004)	150	< 3.7
	silt	Ravenglass - Raven Villa (2006)	160	12
	silt	Whitehaven - Outer harbour north (2003)	140	<3.1

GENERALISED DERIVED LIMITS

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

- 1. Results from Northern Ireland Radiation Monitoring Group (2005 - 2008)
- Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2005 2008) Results from previous Northern Ireland Radiation Monitoring Group Reports 2.
- 3.
- Results from Annual Report of BNFL Sellafield (2004 & 2006) 4.
- below the limit of detection
- activity seen but near the detection limit <1
- na not analysed
- not recorded. nr

Comparative Data APPENDIX C

TABLE 3 (Cont) SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

Category		Locality Activit	Activity (Bq/kg wet weight)		
			¹³⁷ Cs	⁶⁰ Co	
SHE	CLLFISH				
1.	Lobster	Waterfoot (06/05)	<1	_	
	Winkles	Ballyhalbert (09/05)	_	_	
	Lobster	Irish Sea (09/06)	3	-	
	Mussels	Boneybefore (06/07)	-	-	
	Mussels	Warrenpoint (09/07)	2	-	
	Mussels	warrenpoint (09/07)	2	-	
2	Mussels	Northern Ireland, Carlingford Lough (2004 – mean of 2 measurements)	0.78	< 0.13	
	Mussels	Sellafield coastal area (2004 – mean of 5 measurements)	3.0	7.0	
	Winkles	Northern Ireland, Ards Peninsula (2004 – mean of 4 measurements)	0.38	< 0.14	
	Winkles	Sellafield coastal area (2004 – mean of 4 measurements)	4.4	8.7	
	Mussels	Northern Ireland, Carlingford Lough (2005 – mean of 2 measurements)	0.46	< 0.13	
	Mussels	Sellafield coastal area (2005 – mean of 4 measurements)	3.1	6.4	
	Winkles	Northern Ireland, Ards Peninsula (2005 – mean of 4 measurements)	< 0.34	< 0.16	
	Winkles	Sellafield coastal area (2005 – mean of 4 measurements)	8.1	17	
	Mussels	Northern Ireland, Carlingford Lough (2006 – mean of 2 measurements)	0.62	< 0.09	
	Mussels	Sellafield coastal area (2006– mean of 4 measurements)	3.2	1.8	
	Winkles	Northern Ireland, Ards Peninsula (mean of 4 measurements)	< 0.34	< 0.13	
	Winkles	Sellafield coastal area (2006– mean of 4 measurements)	7.3	4.7	
3.	Nephrops	(11/99)	2	_	
	Mussels	Balls Point (3/00)	<1	_	
	Lobster	Ballyhoman (10/00)	<1	_	
	Nephrops	(9/00)	1	-	
	Winkles	Portavogie (04/01)	-	-	
	Lobster	Rathlin (10/01)	<1	_	
	Crab	Cushendall (01/02)	-	-	
	Lobster	Ballyhoman (05/02)	<1	-	
	Lobster	Newry & Mourne (09/02)	<1	-	
	Mussels	St Johns Point (06/03)	<1	-	
	Mussels	ShingleBay (05/04)	-	-	
	Lobster	Colliery Bay (06/04)	-	-	
4.	Mussels	St Bees (2004)	2.4	8.3	
	Winkles	St Bees (2004)	8.9	12	
	Mussels	Sellafield coastal area (2006)	2.4	3.2	
	Winkles	Sellafield coastal area (2006)	6.2	6.2	
GEN	NERALISED DERI	VED LIMITS	4000	20000*	

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

- * Calculated from NRPB-GS7. They are for an adult criical group assuming a consumption rate of 50kg/year and an effective dose limit of 1mSv/year.
- 1. Results from Northern Ireland Radiation Monitoring Group (2005 2008)
- 2. Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2005- 2008)
- 3. Results from previous Northern Ireland Radiation Monitoring Group Reports
- 4. Results from Annual Report of BNFL Sellafield (2004 & 2006)
- below the limit of detection
- <1 activity seen but near the detection limit
- na not analysed
- nr not recorded.

Comparative Data APPENDIX C

TABLE 4
SELECTED ALPHA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

	Locality	Activity (Bq/kg dry weight)		eight)
		²³⁸ Pu	^{239,240} Pu	²⁴¹ Am
SEDI	MENT			
1.	Belfast Lough (06/05) Millisle (09/05)	1.65 0.18	8.73 1.51	10.32 1.78
	Carrickfergus (05/06) Millisle (09/06)	0.74 0.33	3.05 2.63	4.89 0.91
	Boneybefore (06/07) Belfast Lough (10/07)	0.50 0.37	3.03 2.95	5.85 3.77
2	Ballymacormick (2004 – mean of 2 measurements) Sellafield (2004 – mean of 4 measurements)	1.8 na	12 na	18 170
	Ravenglass – Raven Villa (2004 – mean of 4 measurements) Ballymacormick (2005 – mean of 2 measurements)	na 1.5	na 8.5	1300 13
	Sellafield (2005 – mean of 4 measurements) Ravenglass – Raven Villa (2005 – mean of 4 measurements)	na na	na na	160 1600
	Carlingford Lough (2006 – mean of 2 measurements) Whitehaven Outer Harbour (2006 – mean of 4 measurements)	2.1 8.6	14 47	9.3 300
	Ravenglass - Raven Villa (2006 – mean of 4 measurements)	na	na	810
3.	Longfield Bank (9/95)	2.7	17.0	21.0
	River Foyle (8/96) Larne Lough (6/97)	1.76 0.96	10.01 5.33	17.49 7.45
	Belfast Lough (11/98) Larne Lough (11/99) Belfast Lough (10/00)	0.64 0.59	3.66 3.72	3.62 5.25
	Belfast Lough (10/99) Warrenpoint (3/01) Belfast Lough (11/00)	1.95 1.60 1.28	12.21 11.03 7.65	15.29 7.10 8.70
	Warrenpoint (01/02) Coshowen (01/02)	2.29 2.03	13.51 11.88	8.92 18.14
	Belfast Lough (09/02) Carrickfergus (06/03)	2.03 2.1 0.66	12.1 3.66	11.9 3.26
	Warrenpoint (09/03) Belfast Lough (06/04)	1.11 1.44	7.79 10.92	7.28 88.51
	Carrickfergus (05/04)	0.52	2.77	2.40
		Total Pu		
4.	Whitehaven - Outer 2, South (2004) Ravenglass - Raven Villa (2004)	120 490		150 560
	Whitehaven - Outer harbour north (2006) Ravenglass - Raven Villa (2006)	120 310		150 340
GEN	ERALISED DERIVED LIMITS	100000	90000	90000

Notes:

The GDLs quoted include revised limits (1998). A full explanation of GDLs is given in Appendix D. Results for transuranic element determinations are reported on a wet basis except for sediment.

- 1. Results from Northern Ireland Radiation Monitoring Group (2005 2008)
- 2. Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004-2006)
- 3. Results from previous Northern Ireland Radiation Monitoring Group Reports
- 4. Results from Annual Report of BNFL Sellafield (2004 & 2006)
- below the limit of detection
- <1 activity seen but near the detection limit
- na not analysed

Comparative Data APPENDIX C

TABLE 5 SELECTED ⁹⁹Tc COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

	Category	Locality	Activity (Bq/kg wet weight)	
			⁹⁹ Tc	
SEAV	WEED			
1.	Dulse	Ballywater (06/05)	4	
	Fucus vesiculosus	Balls Point (09/05)	36	
	Dulse	Ballywater (05/06)	22	
	Fucus vesiculosus	Balls Point (09/06)	34	
	Fucus serratus	Warrenpoint (06/07)	48	
	Fucus vesiculosus	Balls Point (09/07)	52	
2	Fucus vesiculosus	Sellafield (2004 – mean of 4 measurements)	7100	
	Fucus vesiculosus	Ardglass (2001 – mean of 3 measurements)	530	
	Rhodymenia spp.	Strangford Lough (2004 – mean of 3 measurements)	28	
	Seaweed	Sellafield (2005 – mean of 2 measurements)	6900	
	Fucus vesiculosus	Ardglass (2002 – mean of 3 measurements)	310	
	Rhodymenia spp.	Strangford Lough (2005 – mean of 3 measurements)	24	
	Seaweed	Sellafield (2006 – mean of 2 measurements)	3900	
	Fucus vesiculosus	Ardglass (2006 – mean of 2 measurements)	1100	
	Rhodymenia spp.	Strangford Lough (2006 – mean of 3 measurements)	16	
3	Fucus vesiculosus	Warrenpoint (11/99)	990	
	Fucus vesiculosus	Carrickhugh Bridge (3/00)	423	
	Fucus spiralis	Ards (10/99)	450	
	Fucus vesiculosus	Warrenpoint (3/01)	4774	
	Fucus vesiculosus	Ards (4/01)	1528	
	Fucus vesiculosus	Ballyhalbert (01/02)	3685	
	A.nodosum	Warrenpoint (01/02)	3635	
	Fucus vesiculosus	Warrenpoint (06/02)	1011	
	Fucus vesiculosus	Carrickhugh Bridge (06/02)	220	
	Dulse	Ballycastle (06/03)	20	
4.	Fucus vesiculosus	Seascale (2004)	25000	
	Fucus vesiculosus	Nethertown (2004)	9800	
	Fucus vesiculosus	Nethertown (2006)	2500	
Notes				
1.		Ireland Radiation Monitoring Group (2005 - 2008)		
2.		tivity in Food & the Environment, Food Standards Agenc	ey (2004- 2006)	
3.	. Results from previous Northern Ireland Radiation Monitoring Group Reports			

- Results from previous Northern Ireland Radiation Monitoring Gr Results from Annual Report of BNFL Sellafield (2004 & 2006)
- 3. 4.
- below the limit of detection
- <1 activity seen but near the detection limit
- not analysed na

Comparative Data APPENDIX C

TABLE 5 SELECTED ⁹⁹Tc COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

	Category	Locality	Activity (Bq/kg wet weight)
SHEL	LFISH		⁹⁹ Te
1.	Lobster	St John's Point (06/05)	3
	Mussels	Derry (09/05)	5
	Lobster	North Channel (05/06)	69
	Mussels	Longfield (09/06)	6
	Mussels	Carrickfergus (06/07)	65
	Lobster	Irish Sea (09/07)	85
2.	Lobster	Sellafield coastal area (2004 - mean of 8 measurements	s) 100
	Lobster	Kilkeel (2004 - mean of 4 measurements)	160
	Mussels	Carlingford Lough (2004 - mean of 2 measurements)	20
	Lobster	Sellafield coastal area (2005 - mean of 8 measurements	s) 1800
	Mussels	Carlingford Lough (2005 - mean of 2 measurements)	18
	Lobster	Kilkeel (2005, mean of 4 measurements)	150
	Lobster	Sellafield coastal area (2006 - mean of 8 measurements	s) 1000
	Mussels	Carlingford Lough (2006 - mean of 2 measurements)	20
	Lobster	Kilkeel (2006, mean of 2 measurements)	100
3.	Lobster	Down (10/99)	57
	Nephrops	(11/99)	96
	Crab	Fairhead (3/00)	60
	Lobster	Down (10/00)	442
	Lobster	Newry & Mourne (10/00)	253
	Lobster	Ballyhoman (10/01)	520
	Nephrops	Unknown (09/01)	103
	Lobster	Down (05/02)	201
	Lobster	Newry & Mourne (09/02)	374
	Mussels	Larne (06/03)	65
	Mussels	Derry (09/04)	103
	Lobster	Newry & Mourne (09/04)	162
4.	Lobsters	St Bees (2004)	2700
	Mussels	St Bees (2004)	1900
	Lobsters	Sellafield coastal area (2006)	560
	Mussels	Sellafield coastal area (2006)	200
Notes			

- 1.
- Results from Northern Ireland Radiation Monitoring Group (2005 2008)
 Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006)
 Results from previous Northern Ireland Radiation Monitoring Group Reports 2.
- 3.
- Results from Annual Report of BNFL Sellafield (2004 & 2006) 4.
- below the limit of detection
- <1 activity seen but near the detection limit
- not analysed na

Comparative Data APPENDIX C

TABLE 5 SELECTED 14C COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

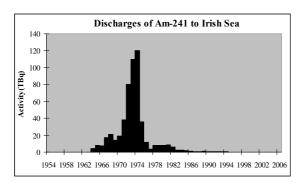
	Category	Locality	Activity (Bq/kg wet weight) 14C
SEAI	FISH		
1.	Haddock	Irish Sea (06/05)	42
	Dogfish	North Channel (09/05)	23
	Haddock	Irish Sea (05/06)	32
	Haddock	Irish sea (06/06)	70
	Haddock	North Channel (09/07)	49
2	Plaice Cod Plaice Cod Plaice Cod	Sellafield offshore (2004) Kilkeel (2004 – mean of 4 measurements) Sellafield offshore (2005 – mean of 2 measurements) Kilkeel (2005 – mean of 4 measurements) Sellafield offshore (2006) Kilkeel (2006 – mean of 3 measurements)	140 50 300 26 200 55
3	Whiting	Northern Ireland (2003)	na
	Haddock	Down (2003)	28
	Haddock	North Channel (2003)	47
	Cod	Craigavon (2004)	23
	Haddock	Derry (2004)	13
4.	Plaice	St Bees (2004)	200
	Cod	St Bees (2004)	140
	Cod	Sellafield coastal area (2006)	150
	Plaice	Sellafield coastal area (2006)	130

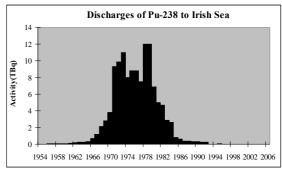
- Results from Northern Ireland Radiation Monitoring Group (2005 2008)
- Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004-2006)
 Results from previous Northern Ireland Radiation Monitoring Group Reports
 Results from Annual Report of BNFL Sellafield (2004 & 2006) 2.
- 3.
- 4.
- below the limit of detection
- activity seen but near the detection limit <1
- not analysed na

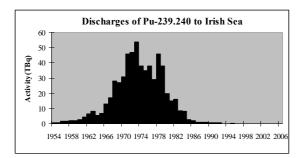
THE NUCLEAR ENVIRONMENT, INCIDENTS AND EVENTS

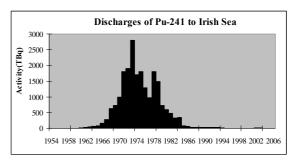
Radioactivity in Northern Ireland is derived mainly from weapons testing, Chernobyl and BNFL Sellafield. This Appendix contains information on the activities at Sellafield and brief summaries of recent nuclear incidents and events.

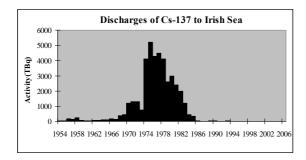
BNFL SELLAFIELD

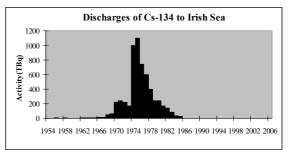

British Nuclear Fuels plc (BNFL) is concerned mainly with the design and production of fuel for nuclear reactors and its reprocessing after irradiation. The company also operates a solid waste disposal site and nuclear power plant that supplies electricity to the national grid. Regular monitoring is carried out of the environmental consequences of discharges of radioactive waste from four BNFL sites in England, namely Sellafield, Drigg, Springfields and Capenhurst. These nuclear sites are responsible for the largest discharges of radioactive material and are the prime focus of MAFF & EA monitoring. Most sampling and direct monitoring is conducted in the site's immediate vicinity. However, because of the ability to detect the effects of the discharges of liquid effluent from BNFL Sellafield in many parts of north-European waters, the MAFF programme for this site extend beyond national boundaries.

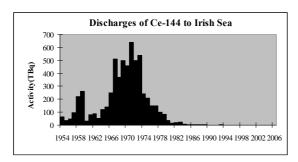

Operations and facilities at Sellafield include fuel element storage and decommissioning, the Magnox and oxide fuel reprocessing plants and the Calder Hall Magnox nuclear power station. Radioactive waste discharges include a very minor contribution from the adjoining UKAEA Windscale facilities. The most significant discharges are made from the BNFL fuel element storage ponds and the reprocessing plants, through which pass irradiated Magnox and oxide fuel from the UK nuclear power programme, and some fuel from abroad. ¹

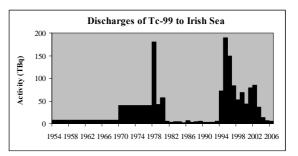

Authorisation for discharge is given by the Environment Agency. At the end of 1999 the discharge limit for Tc-99 was reduced from 200TBq/y to 90TBq/y. A review of all discharges from Sellafield commenced in April 2000 after initial public consultation. In November 2000 the Agency started consultation on proposals for future discharge of Tc-99 to the sea and in 2006 the limit was further reduced to 10 TBq/y.


Discharges of Tc-99 decreased significantly during 2003 due to trials with tetraphenylphosphonium bromide (TPPBr). This reacts with the Tc-99 to form a salt which is subsequently retained and encapsulated. This treatment will continue with all medium active concentrate (MAC)².


- Taken from 'Radioactivity in Food & the Environment 1995', Food Standards Agency.
- ² Taken from BNFL Annual Report 2003.







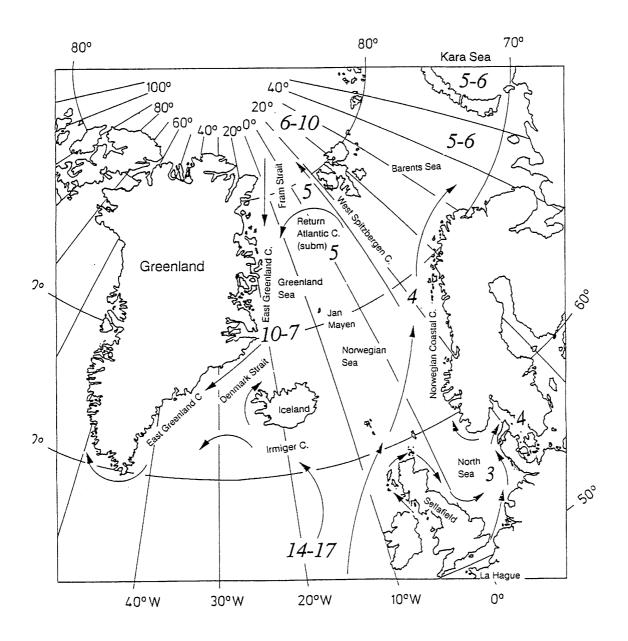
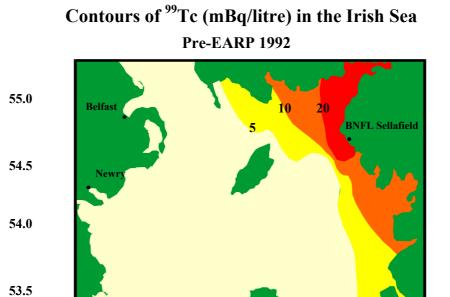

FIGURE 5: SELLAFIELD DISCHARGES TO THE IRISH SEA, 1954 – 2006 (BNFL 2006)

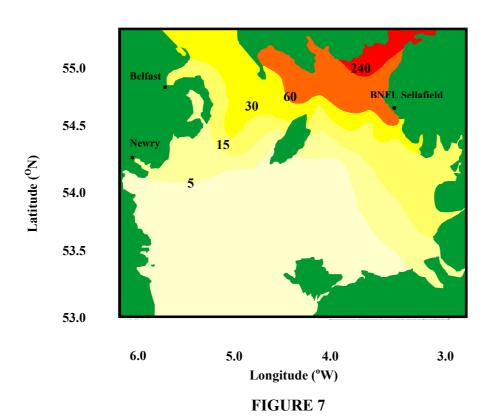
TABLE 1 SELLAFIELD DISCHARGES TO THE IRISH SEA, 1998 - 2006 (BNFL 2006)

N				Annual disc	harge (Teral	ecquerel) *	*			a
Nuclide	1998	1999	2000	2001	2002	2003	2004	2005	2006	Authorised Limit (TBq) a
Tritium	2300	2500	2300	2600	3300	3900	3200	1600	1100	20,000
Americium-241	0.05	0.03	0.03	0.04	0.04	0.06	0.04	0.03	0.05	0.3
Antimony-125	0.05	7.9	7.8	13	17	23	29	12	8.0	-
Caesium-134	0.32	0.34	0.23	0.48	0.49	0.39	0.40	0.16	0.15	1.6
Caesium-137	7.5	9.1	6.9	9.6	7.7	6.2	9.7	6.0	6.0	34
Carbon-14	3.7	5.8	4.6	9.5	13.0	17	16	5.0	11	21
Cerium-144	0.76	0.60	0.55	0.79	0.97	0.88	0.82	0.54	0.60	4
Cobalt-60	2.4	0.89	1.2	1.2	0.89	0.43	0.78	0.70	0.14	3.6
Curium-242	0.006	0.003	0.003	0.006	0.003	0.003	0.006	0.004	0.002	-
Curium-243+244	0.003	0.002	0.003	0.006	0.02	0.01	0.01	0.004	0.002	0.069
Europium-152	0.16	0.11	0.07	0.11	0.13	0.23	0.22	0.17	0.11	-
Europium-154	0.10	0.05	0.06	0.08	0.13	0.22	0.17	0.11	0.08	-
Europium-155	0.09	0.04	0.05	0.07	0.10	0.19	0.14	0.12	0.06	-
Iodine-129	0.55	0.48	0.47	0.63	0.73	0.55	0.65	0.30	0.20	2
Iron-55	0.01	0.02	0.04	0.02	0.03	0.02	0.04	0.02	0.03	-
Manganese-54	0.07	0.04	0.01	0.03	0.02	0.02	0.01	0.01	0.007	-
Neptunium-237	0.04	0.04	0.03	0.04	0.06	0.05	0.06	0.05	0.05	-
Nickel-63	0.4	0.58	0.43	0.27	0.46	0.39	0.34	0.90	1.9	-
Niobium-95	0.35	0.08	0.09	0.35	0.08	0.09	0.10	0.07	0.07	*
Plutonium alpha	0.14	0.11	0.11	0.16	0.34	0.36	0.29	0.20	0.15	0.7
Plutonium-241	3.5	2.9	3.2	4.6	10	10	8.1	5.0	3.6	25
Promethium-147	0.39	0.41	0.35	0.42	0.79	0.67	0.35	0.30	0.17	-
Ruthenium-103	0.15	0.13	0.11	0.15	0.18	0.18	0.19	0.12	0.13	-
Ruthenium-106	5.6	2.7	2.7	3.9	6.0	12	4.4	1.8	3.5	63
Silver-110m	0.12	0.09	0.08	0.12	0.09	0.08	0.12	0.07	0.07	-
Strontium-89	0.88	0.60	0.64	0.76	0.52	0.56	1.7	1.1	0.50	-
Strontium-90	18	31	20	26	20	14	18	13	5.0	48
Sulphur-35	0.43	0.32	0.36	0.43	0.32	0.36	0.12	0.08	0.06	-
Technicium-99	53	69	44	79	85	37	14	7.0	6.0	10
Zinc-65	0.14	0.07	0.03	0.05	0.03	0.03	0.03	0.02	0.02	-
Zirconium-95	0.30	0.10	0.10	0.13	0.17	0.14	0.13	0.09	0.09	3.8*
b	0.17	0.13	0.12	0.20	0.35	0.4	0.29	0.25	0.21	1
Total alpha Total beta	0.86	110	77	120	110	83	73	43	29	220
Uranium (kg)	550	540	610	390	440	480	440	370	440	-
Cramum (Kg)	550	540	010	390	770	700	770	310	770	

- ** million million becquerel, 10¹²Bq,
- * Niobium-95 and Zirconium-95 have a combined authorised limit of 3.8TBq
- a Limits as quoted in BNFL report 2006. Different limits applied in previous years.
- b Total alpha and total beta are overall control measures that do not reproduce precisely the contributions of individual nuclides.

TRANSPORT OF DISSOLVED RADIOACTIVITY IN WESTERN EUROPEAN AND ARCTIC WATERS


FIGURE 6


Major surface currents and transit times in years from Sellafield to different areas. (Extract from Marine Pollution Bulletin Vol 32,1995 – H. Dahlgaard, Q. Chan, J. Herrman, H. Nies, R.D. Ibbett, P. J. Kerrshaw (1995) on the background level of 99 Tc, 90 Sr and 137 Cs in the North Atlantic, J Mar. Sys 6, 571-578)

Latitude (°N)

53.0

6.0

5.0

4.0

Longitude (°W)

3.0

Adapted from K.S. Leonard, D. McCubbin, J. Brown, R. Bonfield, T. Brooks, 1997. A summary report of the distribution of ⁹⁹Tc in UK Coastal Waters. Radioprotection – Colloques, 32, C2-109-114.

Note: EARP is the Enhanced Actinide Recovery Plant at BNFL Sellafield

NUCLEAR INCIDENTS AT BRITISH NUCLEAR INSTALLATIONS REPORTED DURING THE PERIOD JANUARY 2005 TO DECEMBER 2007

The nuclear industry in Britain is required to report nuclear incidents to the Health & Safety Executive under powers derived from Section 11 of the Health & Safety at Work Act 1974. The Health & Safety Executive publish Quarterly Incident Statements for installations. Single copies can be obtained, free of charge, from the Library, Health & Safety Executive, Ground Floor North Wing, Rose Court, 2 Southwark Bridge, LONDON SE1 9HS. (Tel: 0171 717 60000 Fax: 0171 928 6635) and are also available on the HSE website at http://www.hse.gov.uk/nuclear/quarterly-stat/index.htm. The International Atomic Energy Authority (IAEA) and the OECD Nuclear Energy Agency have developed the International Nuclear Event Scale (INES), to categorise the significance of nuclear events. The following table was taken from the LARRMACC (now LARnet) Emergency Handbook for Members.

LEVEL		DESCRIPTOR	THE SCALE	EXAMPLES
Accidents:	7	Major accident	Major release of radioactivity. Widespread health and environmental effects.	Chernobyl USSR 1986
	6	Serious accident	Significant release of radioactivity. Full implementation of local counter-measures.	
	5	Accident with off-site risks	Limited release of radioactivity. Partial implementation of local counter measures.	Windscale UK 1957 Three Mile Island USA 1979
	4	Accident without significant off-site risks	Minor release of radioactivity in the order of prescribed limits. Local protective measures unlikely except for some food monitoring and control. Significant plant damage. Fatal exposure of a worker.	Saint-Laurent France 1980
Incidents:	3	Serious incident	Very small release of radioactivity, a fraction of the prescribed limits. Local protective measures unlikely. Possible acute health effects of a worker.	Vandellos Spain 1989 Sosndy Bar 1992 Tomsk 7 FSU 1993
	2	Incident	Incident with potential safety consequences on-site. Insignificant release of radioactivity off-site.	
	1	Anomaly	Variation from permitted procedures.	
	0	Below scale	No safety significance.	

Extracts from the Health and Safety Executive Quarterly Incident Statements

13/2/2005

Sellafield (British Nuclear Group Sellafield Limited)

Three staff were contaminated whilst changing a thermocouple on Thorp Head End Dissolver vessel C and subsequently spread the contamination to various areas of the plant. The workers were contaminated on the face and hands, BNGSL have advised NII that no statutory dose limits were exceeded although one worker received an extremity dose greater than 10% of the annual statutory limit. Investigations indicated that there was a slight leak in the Dissolver C thermowell, which appears to have allowed contamination in-seepage. Following completion of the BNGSL investigation, a second barrier was engineered around the thermowell pocket and the dissolver was returned to normal operations. The amount of contamination exceeded Ministerial reporting criteria by virtue of the Ionising Radiations Regulations 1999 and BNGSL reported the event under these criteria. Following the report, NII is satisfied with BNGSL's conclusions and will monitor the case over the coming months.

20/4/2005

Sellafield (British Nuclear Group Sellafield Limited

BNGSL discovered a leak within the Thorp Head End Feed Clarification Cell from pipe-work to an Accountancy Tank vessel. The relevant plant and operations were promptly shut down. The leak was into a stainless steel clad, heavily shielded cell designed to contain such leaks and there has been no indication that any liquid leaked from the cell. Radiation monitoring showed there to be no abnormal radioactivity in air or released to the environment and BNGSL concluded that no workers or members of the public have been affected. BNGSL evaluated this event as INES category 3. NII have subsequently issued two Improvement Notices to ensure that BNGSL promptly rectified deficiencies in compliance with nuclear site licence conditions and the NII investigation is continuing.

4/12/2005

Sellafield (British Nuclear Group Sellafield Limited)

BNGSL detected high levels of radiation in some outcell areas of the Highly Active Liquor Evaporation and Storage (HALES) facility. There was no loss of primary containment and no environmental effects were found inside or external to the building. The source of the high radiation was traced to a small diameter wash line feeding the sampling plant which has since since been cleared. Nornal normal operating conditions were restored except to local areas where some access restrictions remain. The root cause of the incident has not yet been established but BNGSL has already recognised the need to improve its approach to learning from experience in HALES. NII will await completion of BNGSL's investigation before deciding whether enforcement action is warranted.

During the period 01/7/2006 - 30/9/2006

Hunterston B Power Station - Reactor 3

Routine inspection of boiler tubes at Hunterston B Reactor 3, during its planned outage under Licence Condition 30, indicated a larger number of defects than was anticipated. The licensee is preparing a safety case to address the finding at Hunterston B Reactor 3, which remains shut down until NII issue a consent for restart of the reactor under Licence Condition 30. (No date provided).

During the period 01/10/2006 - 31/12/2006

Sellafield

A formal investigation has been undertaken by NII into the incident involving a major injury accident to a BNGSL worker whilst maintaining equipment in the Waste Treatment Complex Supercompactor Glovebox Suite. Results of the investigation have given rise to concerns regarding BNGSL's arrangements for compliance with The Ionising Radiations Regulations 1999 (IRR's) and The Provision and Use of Work Equipment Regulations 1998 (PUWER). The issues identified combined to promote degraded conditions and unreliability of the equipment and the requirement for frequent manual interventions. This resulted in the persons working on the plant being exposed to unacceptable risk from the serious and significant committed dose potential of a glove/skin puncture wound, as well as physical major injury. An Improvement Notice is to be issued to enforce the necessary improvements required to make working on the Supercompactor Glovebox suite safe.

10/1/2007 Sellafield

A contamination event occurred within the Sellafield Mixed Oxide fuel fabrication plant (SMP) involving five workers. Biological sampling initiated by BNGSL has confirmed that the doses received by the workers were all less than the annual limit for intake. BNGSL initiated a Board of Inquiry that will report its finding during the next quarter. HM Nuclear Installations Inspectorate has undertaken its own investigation into the event and the analysis of this will be completed during the next quarter.

20/5/2007 Dounreay

UKAEA personnel performed a radiological survey of the inside of a manhole that services an inactive drain line on the North West side of the Dounreay site where historic contamination is known to be present. A contamination smear sample from inside the manhole showed the presence of about 1.3kBq of alpha emitting radioactive material which was subsequently found to contain 60% Pu/Am. The manhole was sealed and the area designated as 'radioactive contamination high'. The quantity of plutonium on the smear sample was about 1000 times less than that of Column 4 of Schedule 8 of Ionising Radiations Regulations 1999. Further surveys inside the manhole performed on 3rd July 2007 did not detect any further alpha contamination. UKAEA's investigation is still ongoing.

RADIATION MONITORING IN THE UNITED KINGDOM

In the United Kingdom all sites where ionising radiation is used (eg hospitals, universities, nuclear establishments) have a statutory responsibility to monitor their environment and keep records of any disposals. The means of monitoring are diverse and often complex radiological protection instrumentation capable of measuring specific isotopes or kinds of radiation are deployed. For example specific measuring systems dedicated to the monitoring of Plutonium isotopes and ¹³¹Iodine exist around and within nuclear sites.

Public concern following the Chernobyl incident stimulated many local authorities to engage in some kind of local radiological assessment. In some cases the authorities conduct monitoring themselves although generally an independent third party is used (university, hospital, commercial laboratories). Over two hundred local authorities are involved in some kind of independent radiation monitoring. This involvement has followed advice from the Institute of Environmental Health Officers (now CIEHO).

The responsibility for discharges of radioactive material into the environment rests with the Environment Agency (EA) and the Scottish Environment Protection Agency (SEPA). MAFF or a delegated laboratory conducts the monitoring of these discharges, particularly around nuclear sites. Additionally, individual sites monitor their local environment eg. UKAEA Winfrith reports. In recent times, following Chernobyl, a more wide ranging assessment of other areas has also been undertaken (eg Radioactivity in Food and the Environment, MAFF, HMSO). The levels permitted are determined from a detailed consideration of the likely pathways of the radionuclides, their physical lifetime and the possible radiation doses that might affect the *critical group*. This is the group of people who are likely to receive the highest radiation exposure as a result of the discharges. The *critical group* is usually identified after a careful survey of the eating habits of the local population has been undertaken. The nuclear establishment and the government department that issue the authorisations are strongly of the opinion that radiation doses to the public are well below internationally agreed limits in all UK sites. Indeed, the National Radiological Protection Board (NRPB), on the basis of comprehensive monitoring around British Nuclear Fuels Limited sites believes that exposure to the general public from effluent discharges is within their guidance level of 0.5 milli-Sieverts/year.

DOSE LIMITS: ORIGINS AND USES

Radiation dose limits are those that should not be exceeded in order that a normal member of society is not exposed to an unacceptable risk. These dose limits are determined from a wide range of criteria such as epidemiological studies (especially from Japanese bomb survivors) and are set in the first instance by the ICRP (International Commission for Radiological Protection). In radiological practice the dose limit is considered to be a precautionary limit and not a danger limit. That is, if the limit is exceeded a situation should not arise that was irremediable. Thus, the risk associated with an increase in dose by several times the dose limit may only cause a very slight increase in the real risk of, for example, death from cancer. Another radiological principle recommended by the ICRP and accepted by the UK establishment is that doses should be as low as reasonably achievable, the ALARA principle. This means that it is not sufficient to merely ensure that dose limits are complied with but that all efforts should be made to minimise them to the lowest practicable levels.

The annual dose limit for radiation exposure is 1 mSv for man-made sources. For authorised discharges there is a single source constraint of 0.3mSv/y and a site constraint of 0.5 mSv/year regardless of the number of owners or operators at that, site. These guidelines apply to existing plants and where compliance is not possible then the ALARA principle should hold and the operation should be within dose limits. (CM 2919, 1995)

The inference to be drawn from this proposal is that there are no sites in the UK that constitute any appreciable radiological hazard to members of the public. To place these dose limits into perspective the average annual dose, from all sources is 2.6 mSv (i.e. natural and made-made sources).

DERIVED LIMITS AND ANNUAL LIMITS OF INTAKE, ALI

The primary dose limit for members of the public is set at 1 mSv per year for artificial sources of radiation. This does not include medical exposure but does include any possible incorporation, via ingestion or inhalation, of radioactive substances. In the latter case where incorporation may take place over some time it is difficult to make any direct measurement of the dose received. In order to comply with the limits, therefore, the ICRP has calculated the CED (committed effective dose) which enables the dose taken into the body to be estimated. In order to do this the Commission has calculated dose factors for the whole body and for each organ or tissue, which expresses the total dose received per unit of activity intake. These factors can then be used to calculate the total activity of a particular radionuclide taken into the body. These calculations take into consideration the physical, chemical and metabolic properties (assimilation, organ concerned, retention period in the organ etc) of the nuclide in question.

i THE USE OF ANNUAL LIMITS OF INTAKE, ALIS

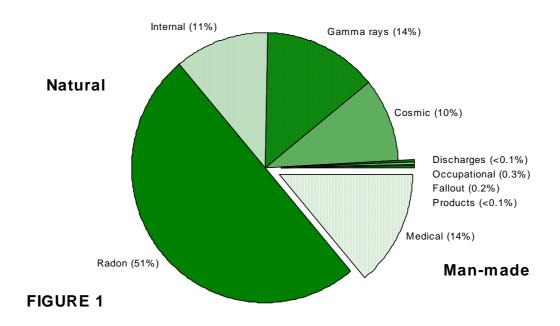
Annual limits of intake of radioactive substances (an ICRP concept) should be used with caution. For example, with the isotope ¹³⁷Caesium, it is possible to calculate the mass concentration that should be tolerated in foods liable to be consumed on a daily basis by the population. The figure calculated represents the acceptable concentration for the consumption of the contaminated food, day after day, year after year throughout the lifetime of the individual *critical group* member in order to comply with the ICRP dose limit. However, consumption is rarely continuous and therefore measured concentrations may be much in excess of the calculated figure. Thus, although a particular isotope may be found having an elevated level in a particular foodstuff, its long-term radiological significance may be less serious than is evident at first seen if measures are taken to counteract the observed levels. As with all radiological data, caution should be exercised in their interpretation and an understanding of their limitations should be borne in mind.

ii GENERALISED DERIVED LIMITS AND DERIVED LIMITS

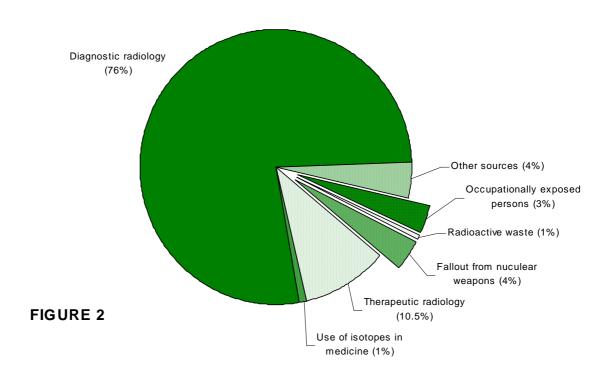
Generalised derived limits (GDLs) and derived limited (DLs) are values expressed as an activity per unit weight or unit volume. The GDL is a generally applicable value based on detailed habit surveys. DLs may have a more restricted significance but are based on similar considerations. They are secondary standards set and used to ensure virtual certainty that a critical group will not be exposed to a radiation dose in excess of the recommended limit, at present 1mSv per annum. They are calculated generally only for those environmental materials which are considered important to a particular critical group. GDLs and DLs are calculated using data published by the ICRP, presented as the committed effective dose (CED). From these data the Annual Limits of Intake ALIs are calculated (which may be quoted for three main age groups, *viz* infants, children or adults). From this information a GDL or DL may be determined by dividing the ALI by the mass of food consumed, volume of air inhaled etc. The following scheme shows the sequence involved in their calculation.

- a. Obtain CED from tabulations eg ICRP-72
- b Calculate ALI by dividing 1 mSv by the CED,
- c. Calculate GDL or DL by dividing ALI by the consumption factor.

N.B. In all calculations the units should be consistent.


In Northern Ireland the effluent discharges from BNFL Sellafield are the current main source of environmentally significant radioisotopes. In all cases no levels of these nuclides have been measured which either exceed or even approach closely the GDLs or DLs.

RADIATION FROM NATURAL SOURCES


The NRPB maintains surveillance on levels of radiation affecting the general public, and others, in the UK and publishes reports. The data used to construct the graphs in Figures 1 and 2 are extracted from a review conducted during 1993 (NRPB R263 - Radiation Exposure of the UK Population 1993 Review). The dose to the average person in the UK is from all sources but there can be wide variations based on geographical location. These are fully described in the report NRPB R311 that has superseded NRPB R263.

Annual exposure of the UK population from all sources of radiation

Total dose = 2.6mSv

Man-made sources of radiation Total annual dose = approx. 0.285mSv

OTHER GUIDELINES

World Health Organisation (WHO) Guidelines for drinking water

Guideline values recommended by the WHO propose a total alpha activity level of 100Bq/m³. These values 'are specified assuming that only the most toxic radionuclides are present in significant quantities', and the recommendations conclude with the statement 'A value in excess of the guideline figure does not in itself imply that the water is unsuitable for consumption'.

Soil and other solids

The level of activity in unspecified soil, or other solid materials, below which no special precautions need to be considered in the disposal of that material is given as 400 Bq/kg (0.4 kBq/kg) in 'A review of Cmnd 884: The Control of Radioactive Wastes'. Certain elements have been exempted - see Statutory Instrument 1002 (June 1986).

Radiation Exposure

The principal limit for radiation exposure is now an effective dose of 1 mSv per year. The site constraint to be used in Waste Discharge Agreements with the EA is 0.5 mSv/year. This is based on the annual risk being less than the risk corresponding to an annual effective dose of 0.5 mSv ie a mortality risk of 5×10^{-6} per annum, based on 1977 ICRP values.

RIMNET (Radiation Incident Monitoring Network)

RIMNET is acknowledged as the national database of all radiological data and information collected in the event of a nuclear incident. The system comprises 92 background gamma dose radiation detectors located across the UK that are interrogated hourly by a Central Database Facility. The Central Database Facility also has the ability to store radionuclide specific information (known as Supplementary Data) as provided by other Government Departments, Local Authorities and Local Authority monitoring groups.

The RIMNET system Phase 2 was fully operational from April 1994. Supplementary Data Entry was achieved by use of a PC based software package (SDE) supplied by the DETR (Department of the Environment, Transport and the Regions) to organisations accredited for the sampling and analysis of radiological data. Data were uploaded freely to the RIMNET database, on the basis of planned mutual benefit to the individual suppliers concerned. The data supplied and data from other sources in that region are downloaded to the data supplier on request. These uploads and downloads were achieved using an X.400 based mailbox system.

RIMNET plays a role in all overseas, domestic and MoD exercises where the release of radioactivity is simulated. In such exercises the RIMNET system is used for the co-ordination of monitoring resources for the provision of radiological data.

The RIMNET fileservers utilises World Wide Web technologies and enable users of RIMNETpc to access data from the fileserver and overlay it on maps. RIMNETpc is currently used by SEPA, DETR, DERA, EA and NRPB. RIMNET 3 became operational in January 2005 with extensive enhancement of the technology of the previous system which has proved reliable and accessible to authorized users. Real time readings from the telemetry network is collected by the central facility and made accessible to users such as local government, government departments and other agencies. RIMNET 3 does not use the X400 mailboxes.

Enquiries about the RIMNET Approved Data Suppliers scheme should be addressed to Mr Keith Binfield, RIMNET 3H/32, Ashdown House, 123 Victoria Street, London, SW1E 6DE.

LARnet (formerly LARRMACC) - LOCAL AUTHORITY RADIATION MONITORING NETWORK

LARnet was established in 1990 (then known as LARRMACC) and its main function was to establish comparability between differing schemes throughout the country by means quality assurance manuals and where appropriate carrying quality assurance audits. LARnet ceased to exist in March 2006.

REFERENCE LEVELS FOR RADIOACTIVE MATERIALS IN THE ENVIRONMENT

GENERALISED DERIVED LIMITS

Generalised Derived Limits (GDLs) are derived and published by the National Radiological Protection Board (NRPB) for the radioactive isotopes of a small number of elements. GDLs represent a cautionary indicator taking into account the various environmental pathways to man. The limits given below apply to uniform conditions over a year and are based on the limiting age group, which is adults for all foods, except as indicated in the tables. The GDLs/DLs for food products are expressed as fresh mass (for ingestion), for grass and sediments are expressed as dry mass (for external irradiation).

Activity (Bq/kg)

	¹³⁷ Cs	¹³⁴ Cs	⁶⁰ Co	⁶⁵ Zn	¹³¹ I
TERRESTRIAL					
Fresh water sediment	20000^4	8000^{4}			
Eggs	3000	2000			400
Freshwater Fish	4000	3000			2000
Fruit	1000	700			200^{2}
Grass	3000	2000			700^{2}
Honey	1700^{3}	1200^{3}			
Meat					
Pig	2000	1000			800^{4}
Cattle	2000	1000			600^{2}
Sheep	3000	2000			2000
Offal	4000	3000			1000^{2}
Poultry	2000	2000			1000^{2}
Milk (Bq/L)	100	100			20
Milk products	1000	900			100^{2}
Soil	1000	600			
Vegetables					
Rootcrop	600	400			100^{2}
Other	900	700			400^{2}
Marine					
Seafish	700	500	1290^{1}	2300^{1}	500
Sediment	5000	2000			
Shellfish					
Molluscs	4000	3000	20000^{1}	36000^{1}	2000
Crustacea	4000	3000	7900 ¹	14200 ¹	2000

Notes

- Not GDLs but derived limits calculated from NRPB-GS7 and NRPB-GS8. They are for the adult critical group consumers assuming an effective dose equivalent limit of lmSv.
- For infants aged 1 year
- Not GDLs but derived limits calculated from NRPB-GS7. They are for an adult critical group assuming an intake of 25 kg/yr and an effective dose equivalent limit of lmSv.
- For children aged 10 years

Activity (Bq/kg)

	²³⁸ Pu	^{239,240} Pu	²⁴¹ Am
Freshwater Fish ²	20	200	200
Sediment			
Marine	100000	90000	80000
Freshwater	400000^3	300000^3	300000^3
Seafish ²	40	40	50
Shellfish			
Molluscs ²	200	200	200
Crustacea ²	200	200	200
Soil	5000	5000	5000

Notes

- For infants of 1 year.
- Only the edible fraction included.
- For children aged 10 years.

NB These radioisotopes are considered to be the only ones that need to be considered in Northern Ireland at present.

METHODOLOGY USED IN GAMMA RAY SPECTROMETRY OF ENVIRONMENTAL MATERIALS

Radiation detection is possible using a variety of techniques and the method chosen depends on the kind of information sought and the level of sensitivity required. There are numerous detectors ranging from technically simple photographic emulsions through to very sophisticated and expensive electronic devices such as that used in the present scheme. A distinction can be made between those detectors that provide general information about radiation doses or the existence of radiation emitters and those which are spectrometric. Radiation spectrometers are generally designed to measure a specific kind of radiation, ie alpha, beta or gamma radiation. Spectrometric devices can identify the emitters (ie specific isotopes) and are an essential part of a radiation monitoring scheme concerned with determining the possible extent of environmental contamination.

The current scheme operating at the National Oceanography Centre, Southampton involves the counting of environmental materials using high resolution gamma ray and alpha spectrometers.

GAMMA RAY SPECTROMETRY

All laboratory measurements are made using Canberra Industries gamma ray spectrometers (30% efficiency P-type HPGe, high purity germanium) linked to associated pulse processing NIM modules (Nuclear Instrument Modules). The counting electronics are of the latest Canberra design (AIM & ICB) and run under control from Genie-PC. The radiation detectors are housed in purpose-built lead shields in order to reduce the contribution from background radioactivity. There are several orders of magnitude reduction in the intensity of such isotopes as ⁴⁰K and uranium and thorium decay chain products (ie isotopes occurring in the immediate environment which exist naturally) when using such a well-shielded set-up. Specially selected 'low background' lead is used in the shields and they consist of a closed cylinder having a wall thickness of 100 mm.

Samples are generally counted in 0.5 or 1 litre Marinelli beakers. Most samples have been counted for approximately 12 hours.

TABLE 1: NOMINAL DETECTION LIMITS FOR GAMMA-EMITTING RADIONUCLIDES

Radionuclide	Detection Limit	Isotope	Detection Limit
⁵⁴ Mn	1 Bq/kg	⁶⁶ Co	1 Bq/kg
⁵¹ Cr	10 Bq/kg	⁶⁵ Zn	2 Bq/kg
⁵⁹ Fe	2 Bq/kg	¹³¹ I	1 Bq/kg
⁵⁷ Co	1 Bq/kg	¹³⁴ Cs	1 Bq/kg
⁵⁸ Co	1 Bq/kg	¹³⁷ Cs	1 Bq/kg

- 1. Detection limits are calculated for a 60,000 second count.
- 2. Detection limits are calculated according to Currie (Analytical Chemistry Vol 40 1968).
- 3. Detection limits should be viewed with respect to the Generalised Derived Limits (GDL) given for a particular material. In all cases the detection limits are well below the GDLs (see comparative table of results).
- 4. The detection limits shown are those for a particular sample type and may be higher or lower for other samples. For example, the detection limits for milk will be slightly lower than those shown above

SPECTRAL DATA REDUCTION

Gamma ray spectra are processed using a sophisticated PC software package FITZPEAKS (JF Computing Services, Stanford in the Vale, Oxon). It uses sophisticated mathematical fitting routines to derive a reliable indicator that is proportional to the activity of an isotope. Numerous other features are available which correct for decay and aid in the identification of the isotopes. The ultimate assigning of isotopes is always accompanied by a close visual inspection of each gamma spectrum to ensure that no errors have occurred.

DETECTOR EFFICIENCY CALIBRATION 1

The calibration of a gamma ray spectrometer for activity measurements requires considerable care if reliable low-level data are to be obtained. The need for such a calibration is due to the non-uniform response of HPGe radiation detectors to gammas of different energy and because the detector does not record all nuclear decays. A mixed radionuclide solution of known and certified activity was obtained from Amersham International (code QCY.44) or the National Physical Laboratory (Teddington) and was carefully diluted in a polythene bottle. Carefully weighed portions of this solution were then weighted into PTFE beakers and about 2 grams of a mixture of 200-400 mesh cation exchange resin (in equilibrium with distilled water) and chromatographic cellulose were added. The mixture was stirred for about 1 hour and the solution was then slowly evaporated to dryness. The resulting dry residue containing the radionuclides was ground with a portion of one of several matrices (powdered shale, alcohol-washed and sieved dried fish and cellulose powder). The remaining part of the chosen matrix (which had been previously found to be sufficient to occupy the counting beaker) was then shaken for about 30 minutes in a large plastic tub with the radionuclide bearing powder. Care was taken to ensure that no activity remained in any container at any stage of the preparation. This was achieved by counting the empty containers in the gamma ray spectrometer to confirm that all activity was quantitatively transferred. Each kind of sample was counted and its activity determined using a calibration standard of equivalent composition and geometrical form.

SAMPLE PREPARATION FOR GAMMA SPECTROSCOPY

Generally, large samples of biological materials contain low levels of radionuclides. Sample preparation is concerned with fitting the maximum amount of material into a fixed geometry after minimum pre-treatment. Most biological materials have a very high water content (50-90% body weight). Thus, for samples of biological origin, volume reduction is achieved by dehydration using freeze-drying.

Solid biological materials - vegetation, fish, shellfish and meat - are chopped into strips/cubes prior to freezing on stainless steel trays. In the case of consumable produce (such as root crop, fish and shellfish) only the edible fractions are frozen. The frozen products are loaded onto heater mats within the vacuum chamber of the freeze-drying apparatus. The chamber is evacuated to a set minimum pressure, at which heat is supplied from the heater mats to the frozen samples. Under these conditions, ice within the samples is changed directly from the solid to the vapour state. The evolved water vapour is trapped within the condenser of the refrigerator unit. The dry tissues are removed from the trays and set aside for counting. Where necessary, materials undergo further chopping to ensure a homogenous distribution within the counting receptacle.

Non-biological samples (ie soils and sediment) are oven-dried at 80°C.

The dried materials can be stored almost indefinitely at room temperature without the addition of a preservative.

 I. W. Croudace (1991) A reliable and accurate procedure for preparing low-activity efficiency calibration standards for germanium gammaray spectrometers. J. Radioanal.Nucl.Chem.Lett. 153, 151-162.

ALPHA SPECTROMETRY & THE TRANSURANIC ELEMENTS

The large-scale introduction of transuranic elements into the environment arose initially from the detonation of nuclear weapons in the atmosphere in the 1950s. A test-ban treaty on atmospheric testing was agreed between the USSR, USA and the UK in 1963; China, France, India and Pakistan are still not signatories. In addition the burn-up on re-entry of satellite power packs for example a SNAP-9, has added to the inventory. The radionuclide content of these events has resulted in widespread low-level contamination. Another major source of transuranics has been the deliberate, controlled discharge of low-level effluents from the nuclear power industry. Accidental releases of transuranics to the environment have occurred from nuclear plant operations and from the transport of nuclear weapons (i.e. Windscale Fire 1957; Three Mile Island 1978; Chernobyl 1986; Palomares, Spain 1966 and Thule, Greenland 1968).

TABLE 2: TRANSURANIUM ELEMENTS RELEASED TO THE ATMOSPHERE

Nuclide	Amount, TBq	Half life, years
238p	000	07.7
²³⁸ Pu ²³⁹ Pu	890	87.7
23'Pu	5.7×10^3	2.41×10^4
²⁴⁰ Pu	7.7×10^3	6.57×10^3
²⁴¹ Pu*	3.6×10^5	14.1
²⁴¹ Am#	1.2×10^4	433

Notes

RECOGNITION OF TRANSURANIC SOURCES

^{239,240}Plutonium and ²⁴¹Americium are the main transuranics produced from nuclear weapons testing, whereas Plutonium and ²⁴¹Americium will be the main isotopes from nuclear reactor operations. ²³⁸Plutonium/^{239,240}Plutonium, can be used to elucidate the origin of Plutonium in the environment. The various potential sources of Plutonium and some typical ratios associated with these operations are listed in Table 3.

TABLE 3: TYPICAL ²³⁸PLUTONIUM/^{239,240}PLUTONIUM RATIOS

Source	Ratio
Atmospheric fallout from nuclear weapons testing	0.036 - 0.076
Satellite re-entries	0.5 - 2.0
Nuclear fuel reprocessing	0.2 - 3.0
Nuclear power stations	0.4 - 0.8

COMPARATIVE DATA

The major repositories of transuranics in the environment are in soils and sediments. Some typical activity values are listed in Table 4 in order to put our data in perspective.

TABLE 4: PLUTONIUM IN SOILS AND SEDIMENTS

Source and Location	Amount Bq/kg	
Nuclear weapon testing		
Global fallout ¹	0.02 - 0.7	
Chemical reprocessing		
Irish Sea (sediment) ¹	10 - 2000	
Winfrith (silt)	1.12 - 1.34	
Channel Islands (sediment) ²	0.371 - 2.49	

^{*} Largely decayed to ²⁴¹Am # Derived from ²⁴¹Pu by decay

 $¹ TBq = 10^{12}Bq$

Allard et. al. 1984

MAFF aquatic environment monitoring report No 19 1988.

CHEMICAL SEPARATION PROCEDURES

Since alpha particles have very short penetration depths it is necessary to apply complex means to identify their presence. They have to be isolated from all other elements and presented to the detector as an ultra-thin layer (via electrodeposition, for example) if high quality data are to be obtained. The critical factor in the determination of transuranic elements by alpha spectrometry is how effectively a chosen separation scheme can eliminate not only the interfering natural alpha emitters i.e. uranium, thorium and polonium but also stable elements such as iron, rare earth elements, manganese etc. These elements can impair the alpha spectra when they are electrodeposited together with the transuranics onto the counting planchettes. Consequently an adequate scheme of sequential procedures for the separation of transuranic elements should eliminate all these interferences. The radiochemical scheme for the separation of transuranic elements preferred at Southampton is outlined below.

The scheme can be divided into 4 parts

- i) Pretreatment (freeze-drying, ashing etc)
- ii) Fusion or acid leaching
- iii) Chemical Separation
- iv) Electrodeposition

Inspection of the alpha spectra of plutonium and americium shows that the separation scheme used performs satisfactorily. The chemical yield ranges normally between 30-100%. The electrodeposition of the plutonium and americium (plated separately) takes place in an ammonium oxalate-HCl medium at a pH of 2-3, onto a stainless steel disc under an electric current of 300mA (nominally 10 V for 2.5 hours).

Internal tracers are used in each sample to facilitate activity determinations and to monitor the chemical efficiency of the procedure. ²⁴²Pu and ²⁴³Am are used as tracers because of their long half lives, thereby not requiring any decay corrections and also because their respective peaks can be easily resolved from the nuclides of interest. Blank analyses are also made to monitor the effect of reagent impurities. Results so far indicate that this represents less than 1% of the recorded activity. Cross contamination of glassware etc is avoided by the use of good laboratory practices, namely the soaking of all glassware in acid, then Decon for 24 hours, followed by washing in hot water and distilled water.

In many analytical techniques a lower limit of detection is defined in terms of the background. Since there is zero background in alpha spectrometry this is not possible. Any background that is present is non-random and is due mostly to the contamination of the detectors. In alpha spectrometry the question is, whether a peak is real or not and thus it is necessary to define a threshold value for peak recognition. This value is set arbitrarily at 10 counts over a 200,000 second counting time and the detection limits for isotopes is 0.01Bq.

ALPHA SPECTROMETRY

The electroplated discs are counted with Passivated Implanted Planar Silicon (PIPS) detectors (Canberra Industries), with active areas of 450 mm² (res. <20 keV), installed in a Canberra Quad® chamber connected through ICB ADC and mixer-routers. A GENIE-PC system controls the system hardware. A counting time of at least 300000 seconds is used to count the very low activity levels of transuranics found in the samples examined to date.

The alpha spectrometers are calibrated for their energy response and counting efficiency. All the detectors are calibrated to have an energy response that places the various alpha-energies in the same relative positions. The counting efficiency is essentially the geometrical efficiency of the detector relative to the source position for accepting alpha particles from the source. It is determined from counts for a source that has a known activity but the quantification of the sample activities does not depend on this efficiency.

BETA ANALYSIS OF ENVIRONMENTAL MATERIALS

Technetium-99 (⁹⁹Tc) is a low energy, pure beta emitter which concentrates in some marine biota. The element is highly volatile in certain oxidation states and to prevent loss of Tc controlled conditions have to be applied throughout the methodology to ensure complete chemical recovery along with ensuring good decontamination from interfering isotopes. Isotopes which will interfere with the beta analysis, such as Ruthenium isotopes, have to be completely eliminated along with stable elements such as iron and calcium which will adversely affect the determination of Tc.

The final measurement of the samples is performed using Liquid Scintillation Counting (LSC). ^{99m}Tc as pertechnate is used as a yield monitor.

The analytical scheme can be divided into four parts

i) Preliminary treatment Ashing, acid digestion)

ii) Purification Precipitation, solvent extraction)
iii) Final measurement Liquid scintillation Counting

BETA ANALYSIS OF ENVIRONMENTAL MATERIALS (cont)

The samples are ashed under controlled conditions after the ^{99m}Tc yield monitor has been added. An acid digestion stage follows which solubilises the Tc present. A precipitation step is carried out to remove any iron and calcium that can cause interferences and reduce the solvent extraction efficiency. ⁹⁹Tc is purified by a combination of anion exchange and solvent extraction.

The organic phase is mixed directly with a commercially available scintillant and ^{99m}Tc determined by gamma spectrometry. The sample was stored for a week to allow the ^{99m}Tc to completely decay and the ⁹⁹Tc activity is determined by LSC.

References

F Wigley, P E Warwick, I W Croudace, J Caborn & A.L. Sanchez (1999) Optimised method for the routine determination of Technetium-99 in environmental samples by liquid scintillation counting. Analytica Chimica Acta 380, 73 - 82

ASSESSMENT OF DATA QUALITY

The activity data quoted in the appendices are reported without any uncertainties or confidence limits. The reason for this is to prevent needless clutter or confusion. However, data quality assessments are made regularly by the following means:-

- a. measuring certified reference materials (e.g. those produced by the International Atomic Energy Authority, IAEA
- b. measuring reference samples produced by other independent laboratories
- c. producing multiple standards using certified and traceable activity standards (eg. as supplied through Amersham International and the National Physical Laboratory.)

Results of inter-laboratory measurements and detection limits allow some assessment of data accuracy and precision without the need for quoting confidence limits with all the reported data.

The following tables present radioanalytical data produced in various quality assessment exercises.

QUALITY ASSURANCE - GAMMA

An assessment of the accuracy of sample activities can be achieved in a number of ways. One means is to count a sample measured in one or more independent laboratories and to compare the results.

The method used to check data accuracy involves using a range of natural matrix reference materials, NMRMs or prepared standards. (See tables 5 - 7).

Data from intercomparison exercises are presented in Table 10.

TABLE 5: QUALITY ASSURANCE ASSESSMENTS (Bq/kg) - GAMMA

IAEA ¹ Sample	Isotope	Recommended or	Measured at	Measured
		Certified Value	Southampton	at ITE ³
Fish	¹³⁷ Cs	14.2	15.3	16.0
F72	40 K	-	340	330
Sediment	⁶⁰ Co	11.5	10.8	12.2
S36	¹³⁷ Cs	13.9	14.6	14.1
Sediment	¹³⁷ Cs	-	52.7	55.0
S71				
Sediment	¹³⁷ Cs	53.7	54.9	52.8
S43				
Seaweed	⁵⁴ Mn	19.7	nd	nd
A17	⁶⁰ Co	1360	1340	1396
	¹³⁷ Cs	16.7	17.0	15.8
Pine needles	¹³⁷ Cs	110	112	-
CLV-1 ²		-		

Notes

TABLE 6: QUALITY ASSURANCE DATA - GAMMA

	Sample CLV-1 ¹	Measured at Southampton	Provisional Value ²
1. ³ 2. ³	¹³⁷ Cs U (via ²³⁴ Th) ¹³⁷ Cs U (via ²³⁴ Th)	0.115 Bq/g 1.12 Bq/g 0.112 Bq/g 1.11 Bq/g	$\begin{array}{cc} 0.11 & Bq/g \\ 1.07 \pm 0.06 \; Bq/g \\ 0.11 & Bq/g \\ 1.07 \pm 0.06 \; Bq/g \end{array}$

TABLE 7: PROFICIENCY TESTING SCHEME - AEA TECHNOLOGY plc (JAN 1999)

Sample	Isotope	AEA Target Value	Measured at Southampton	All Laboratory Range
Milk	¹³⁷ Cs	182	217 226	162 - 279
Cabbage	¹³⁷ Cs	63.5	73	58 - 85

¹ IAEA International Atomic Energy Authority reference samples.

² CLV-1 Pine needles reference samples supplied by the Canadian National Uranium Tailings Program.

³ ITE Institute of Terrestrial Ecology, Merelwood Laboratory, Grange-over-Sands, Cumbria.

¹ CLV-1 Pine needles reference samples supplied by the Canadian National Uranium Tailings Program.

² Values taken from 'Vegetative radionuclide reference materials' by L Dalton and W S Bowman (1986), NUTP-4E, ISBN 0-660-12231-6.

³ Samples 1 and 2 were prepared using different weighed portions of CLV-1 independently as two samples in different counting geometries.

QUALITY ASSURANCE - ALPHA

In any chemical procedure continuous quality control is required which is able to assess both the precision and accuracy of the methods used. The precision or reproducibility of a method can be monitored by including a suitably reliable 'in-house' reference sample with each batch of samples. Accuracy is more difficult to assess and is partly controlled by the reliability of the isotopic tracer used. The use of natural matrix reference materials (NMRM) provide a way of assessing the accuracy (Table 8).

TABLE 8: ANALYSIS OF REFERENCE SAMPLES (Bq/kg) – ALPHA EMITTERS

IAEA ¹ Sample	Isotope	Recommended or	Measured at Southampton
		Certified Value	
IAEA-307	²³⁸ Pu	0.025	0.03
(Sea-plant)	^{239,240} Pu	0.72	0.69
(Posidonia oceanica)	²⁴¹ Am	-	0.2
IAEA-308	²³⁸ Pu	0.017	1) 0.03
(Mediterranean seaweed)	^{239,240} Pu	0.5	1) 0.48
,	²⁴¹ Am	0.17	1) 0.3
IAEA-134	^{239,240} Pu	15	15
(Cockles)	²⁴¹ Am	38	36
IAEA-135	^{239,240} Pu	213	187
	²⁴¹ Am	318	318
14E4 267	^{239,240} Pu	38	24
IAEA-367	²⁴¹ Am	26.4	34 24
[AEA-384	²³⁸ Pu	38.1 – 40.1	36.70
(Sediment)	^{239,240} Pu	105 - 110	103.35
	²⁴¹ Am	6.7 – 7.6	24

¹ IAEA International Atomic Energy Authority reference samples.

⁻ not counted

QUALITY CONTROL - BETA

Quality control in the analysis of Technetium-99 is aimed at ensuring the precision of the measurement. A spiked sample is analysed along with each batch of samples. The background and counting efficiency of the samples are determined for each batch of samples counted. Participation in intercomparison exercises helps estimate the accuracy of the procedure (see Tables 9 & 10).

With reference to results in Table 10, for the National Physical Laboratory (NPL) Intercomparison in 1995, only spiked water samples were supplied and the validation was limited. For the NPL exercise in 2007, analyses were again performed on spiked aqueous samples. The MAFF/FSA exercise of 2000 supplied samples more appropriate for the assessment of analysis of environmental and food material.

TABLE 9: TECHNETIUM 99 CALIBRATION EXERCISE (SURRC 1998)

Sample	Measured at Southampton: Bq kg ⁻¹				
	A	В	С	D	
_	3.9	35.7	4.21	16.3	
	6.8	36.9	4.32	16.5	
		33.8	4.17	17.7	
			4.13	15.2	
Mean	5.3	36.7	4.21	16.4	

	Measured at all laboratories (8): Bq kg ⁻¹				
Sample	A	В	C	D	
Mean	8.0	61.3	5.3	18.2	
High	18.8	88.5	15.7	23.2	
Low	1.8	36.7	2.99	12.8	

For further ⁹⁹Tc intercomparison data please Table 10.

TABLE 10: INTERCOMPARISON EXERCISES

Sample	Isotope	Recommended Activity (Bq/kg)	Measured Activity
IAEA-321*	¹³⁴ Cs	15.5 ± 1.5	14.9 ± 0.4**
(Milk powder)	¹³⁷ Cs	72.6 ± 1.5	72.1 ± 1.7
(AMIN POWGET)	⁴⁰ K	552.0 ± 16.0	531.0 ± 6.0
IAEA-156	¹³⁴ Cs	132.0	138.7 ± 5 **
	137Cs	264.0	138.7 ± 3 261.0 ± 6
(Clover)	40K	657.0	640.0 ± 10
	60		
UK-NPL (1993)	⁶⁰ Co	91.34 ± 0.91	90.4 ± 1.0
(Inter-comparison exercise)	¹⁰⁶ Ru	48.74 ± 0.49	49.5 ± 1.4
	¹³⁴ Cs	13.85 ± 0.14	$13.6 \pm 0.3^{**}$
	¹³⁷ Cs	22.35 ± 0.22	22.3 ± 0.5
	¹⁴⁴ Ce	44.33 ± 0.44	46.9 ± 1.3
	¹⁵⁴ Eu	28.15 ± 0.28	26.4 ± 0.5
	¹⁵⁵ Eu	49.20 ± 0.49	40.3 ± 0.7
UK-NPL (1995) - BG005/95	⁷ Be	38.5 ± 0.33	40.1 ± 5.0
(Inter-comparison exercise)	⁶⁰ Co	51.2 ± 0.4	50.2 ± 0.5
Control of the contro	¹⁰⁶ Ru	44.6 ± 0.5	43.7 ± 0.2
	134Cs	14.7 ± 0.1	14.5 ± 0.3
	137Cs	36.6 ± 0.4	37.6 ± 0.5
	154Eu	54.03 ± 0.4 54.03 ± 0.5	54.3 ± 0.5
	155Eu	40.1 ± 0.4	33.6 ± 0.5 #
**************************************	134.0	2210.0 125	2211 2
UK-NPL (1995) - KA02/95	¹³⁴ Cs	2210.0 ± 195	2311.0 ± 40
(Intercomparison exercise)	¹³⁷ Cs	4800.0 ± 398	5036.0 ± 37
	¹⁵⁴ Eu	3750.0 ± 260	4321.0 ± 16
	¹⁵⁵ Eu	5536.0 ± 300	5246.0 ± 60 #
NPL (1995)		44.0 ± 0.1	43 ± 4
UK-NPL (1996) - BG033/96	⁵⁷ Co	42.7 ± 0.7	55.0 ± 2.2
(Intercomparison exercise)	⁶⁰ Co	40.39 ± 0.61	42.7 ± 1.8
	¹³⁴ Cs	26.36 ± 0.43	18.7 ± 1.1 #
	¹³⁷ Cs	35.65 ± 0.55	41.4 ± 1.7
	¹⁵⁴ Eu	22.44 ± 0.38	13.9 ± 2.1
	¹⁵⁵ Eu	41.09 ± 0.63	43.4 ± 5.9 #
UK-NPL (1996) - AB013/96	²³⁸ Pu	8.10 ± 0.16	7.37 ± 0.32
(Intercomparison exercise)	^{239,240} Pu	8.29 ± 0.07	8.29 ± 0.2
MAFF/FSA (2000)			
(Mussel)	¹³⁷ Cs	405	438 ± 27
,	241 Am	50	45.1 ± 3
(Lobster)	137 C s	101	102 ± 7
	²⁴¹ Am	121	96 ± 7
(Liver)	¹³⁷ Cs	1165	1197 ± 70
	²⁴¹ Am	56	49.2 ± 4
MAFF/FSA (2000)			
(Mussel)	⁹⁹ Tc	946	979 ± 108
(Lobster	99Tc	23181	23237 ± 2535
(Liver)	⁹⁹ Tc	162	157 ± 20
NPL (2001) ABL019	²³⁸ Pu	2.526 ± 0.050	2.16 ± 0.09
Intercomparison exercise	²³⁹ Pu	2.526 ± 0.050 2.523 ± 0.053	2.10 ± 0.09 2.39 ± 0.1
(low-level activity)	Pu ²⁴¹ Am	2.523 ± 0.053 2.576 ± 0.054	2.39 ± 0.1 2.352 ± 0.08
(10w-16ver activity)	Am ⁶⁰ Co		
	65Zn	2.562 ± 0.030 2.537 ± 0.072	2.62 ± 0.18
	134Cs	2.537 ± 0.072	2.65 ± 0.45
	¹³⁷ Cs	$\begin{array}{c} 2.583 \pm \ 0.026 \\ 2.581 \pm 0.027 \end{array}$	2.71 ± 0.18 2.39 ± 0.19
NPL (1995)	⁹⁹ Tc	44.0 ± 0.1	43 ± 4
	⁹⁹ Tc		2.47± 0.46
NPL (2001)		2.539 ± 0.051	

 $^{^{\}ast}$ IAEA International Atomic Energy Agency reference sample (see report IAEA/AL/026 1990). ** 11% cascade sum correction applied for a 1 litre Marinelli

TABLE 10: INTERCOMPARISON EXERCISES

Sample	Isotope	Recommended Activity (Bq/kg)	Measured Activity
NPL (2002)	²² Na	2.024 ± 0.010	1.95 ± 0.07
Comparison exercise	⁵⁷ Co	2.024 ± 0.010 2.024 ± 0.020	1.99 ± 0.07 1.99 ± 0.06
(high-level activity - N.B. Bq/g)	⁶⁰ Co	2.008 ± 0.008	1.97 ± 0.06 1.97 ± 0.06
BGH009/02	⁹⁵ Zr	1.943 ± 0.032	1.89 ± 0.12
ABH006/002	¹⁰⁶ Ru	2.012 ± 0.011	1.92 ± 0.18
1211000,002	134Cs	2.025 ± 0.016	1.90 ± 0.06
	¹³⁷ Cs	2.015 ± 0.015	1.98 ± 0.06
	¹⁵⁴ Eu	2.081 ± 0.017	1.92 ± 0.06
	155Eu	2.041 ± 0.024	2.01 ± 0.15
	²³⁸ Pu	2.001 ± 0.024 2.000 ± 0.016	2.01 ± 0.13 2.02 ± 0.04
	²³⁹ Pu	1.991 ± 0.023	2.00 ± 0.04
UK-NPL (2003) (Inter-comparison exercise)			
,	60 c	2245 0.005	
BGL/03/***	60Co	2.247 ± 0.007	2.39 ± 0.35
(ABL/03/***)	⁹⁰ Sr	11.942 ± 0.035	11.72 ± 0.51
	¹³⁴ Cs	3.937 ± 0.029	3.93 ± 0.35
	¹³⁷ Cs	2.522 ± 0.021	2.88 ± 0.40
	²³⁸ Pu	2.763 ± 0.011	2.59 ± 0.10
	²³⁹ Pu	3.293 ± 0.016	3.16 ± 0.12
	²⁴¹ Am	3.058 ± 0.023	2.37 ± 0.08
UK-NPL (2005)	¹⁴ C	160 ± 10	161 ± 21
· · ·	90 Sr	10189 ± 16	9425 ± 443
	^{238}U	1059 ± 24	1031 ± 179
	²³⁸ Pu	2607 ± 9	2765 ± 174
	^{239,240} Pu	6060 ± 30	6388 ± 257
	²⁴¹ Am	3691 ± 13	3569 ± 355
UK-NPL (2007)	⁶⁰ Co	11.72 ± 0.04	12.3 ± 0.4
· · · ·	⁹⁰ Sr	17.06 ± 0.03	17.4 ± 0.8
	⁹⁸ Tc	6.501 ± 0.015	6.2 ± 0.5
	^{129}I	372 ± 4	360 ± 10
	¹³⁴ Cs	4.07 ± 0.03	4.5 ± 0.3
	¹³⁷ Cs	8.84 ± 0.06	9.4 ± 0.4
	²³⁸ Pu	17.13 ± 0.08	18 ± 1
	²³⁹ Pu	19.48 ± 0.12	20 ± 1
	²⁴¹ Am	10.07 ± 0.04	9.4 ± 0.4
	2 1111	20.07 = 0.01	2.1 ± 0.1

Notes

QUALITY CONTROL - UKAS ACCREDITATION

The GAU operates a Quality Management System which is accredited to ISO17025:2005 (which also meets the requirements of ISO 9001). The quality of data produced is constantly monitored in compliance with the strict requirements of this accreditation. Specific methods are also accredited to ISO17025: 2005 and the GAU is continuing to add methods to the accreditation in accordance with GAU's policy of continuous improvement. Further information regarding GAU's accreditation can be obtained from the UKAS website at http://www.ukas.com.

 $^{^{\}ast}$ IAEA International Atomic Energy Agency reference sample (see report IAEA/AL/026 1990).

^{** 11%} cascade sum correction applied for a 1 litre Marinelli

Glossary APPENDIX G

GLOSSARY OF TERMS

Activation products are the radioactive atoms formed by the absorption of neutrons in and around the reactor **Activation Products**

core. For example, some of the trace quantities of cobalt and zinc in the water passed through the core become ⁶⁰Co and ⁶⁵Zn.

Attribute of an amount of a radionuclide. Describes the rate at which decays occur in it. The unit becquerel, Bq Activity

corresponds to the decay of one radionuclide atom per second.

A particle consisting of 2 protons plus 2 neutrons which is effectively a helium nucleus. They are emitted Alpha particle

generally by heavy radionuclides.

Annual limits of intake,

ALIS

These values are calculated from the committed effective dose equivalent, CEDE. They represent activity data that are equivalent to the annual dose limit produced by a particular radioisotope. This is an ICRP concept.

Unit of amount of radioactivity, Bq (see activity). 1 nuclear disintegration per second. **Becquerel**

CED Committed effective dose. The dose equivalents which relate to a 50 year integration period.

Decay The spontaneous transformation of a radionuclide. The decrease in the activity of a radioactive substance.

Decay product A nuclide or radionuclide produced by decay. It may be formed directly from a radionuclide or as a result of a

series of successive decays through several radionuclides.

Derived limits See Generalised Derived Limits.

General term for quantity of radiation. See absorbed dose, dose equivalent, effective dose equivalent, com-Dose

mitted effective dose equivalent, genetically significant dose. Frequently used for effective dose equivalent.

Fallout The global deposition of very fine particulate material following testing of nuclear weapons in the atmosphere

during the period 1952-1963 or due to nuclear accidents.

Fission is the division of a nucleus (e.g. 235U) into two (usually unequal) radioactive parts. These nucleii are **Fission Products**

called fission products.

A discrete quantity of electromagnetic radiation emitted during radioactive decay that originates from the Gamma ray

nucleus.

Germanium gamma ray

Spectrometer

A semiconductor detector that is most often used to measure gamma emitters because it offers the best energy

resolution of any device.

Generalised derived

limits

These are general secondary standards, derived from the primary dose limits, which are used as cautionary indicators for materials of environmental significance. They are quoted for specific radionuclides and are expressed in activity units per unit mass, unit volume or unit time. They express a value that will virtually guarantee compliance with legislation dose limits. Fractional GDLs are summed for different radioisotopes to

give an assessment of the overall effective dose equivalent.

Gray A measure of absorbed dose being the amount of energy imparted to unit mass of matter such as tissue.

Symbol Gy. 1Gy = 1 joule per kilogram.

Half-life The time taken for the activity of a radionuclide to lose half its value by decay. Symbol t*□*.

ICRP International Commission on Radiological Protection.

Nuclide A species of atom characterised by the number of protons and neutrons and, in some cases, by the energy state

of the nucleus.

Radiation The process of emitting energy as waves or particles. The energy thus radiated. Frequently used for ionising

radiation in the text.

Radioactive Possessing radioactivity.

Radioactivity The property of radionuclides of spontaneously emitting ionising radiation normally associated with nuclear

decay to another nuclide.

An unstable, chemically inert, radioactive, heavy gas produced during the decay of natural uranium and Radon

> thorium. Radon and its daughters accumulate in soil and may be drawn into dwellings through slight underpressure. Radon activity generally represents the main contribution to the dose received by members of the

public.

See effective dose equivalent. An S.I. unit of radiation dose. Sievert