# 3 Year Report: 2008 - 2011

NORTHERN IRELAND RADIATION MONITORING GROUP

Produced by: Geosciences Advisory Unit, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH

#### Central Radioanalytical Laboratory Facility

Geosciences Advisory Unit National Oceanography Centre European Way SOUTHAMPTON SO14 3ZH

Tel: 023 8059 2780 Fax: 023 8059 6450 Email: iwc@noc.soton.ac.uk

**Project Co-ordinator** Prof. Ian W Croudace

**Principal Radiochemist** Dr. Phillip Warwick

Senior Radiochemists Dr. Pawel Gaca (Am & Pu isotopes, <sup>99</sup>Tc) Dr. Jung Suk Oh (<sup>14</sup>C, <sup>99</sup>Tc) Mrs Alison Dale (sample preparation and gamma spectrometry)

**Technical Administrators** Dr Nicola Holland Madeleine Cobbold

NIRMG website : www.nirmg.org.uk

## THE NORTHERN IRELAND RADIATION MONITORING SCHEME

#### HISTORY

- 1984 District Councils began monitoring radioactivity in the marine environment as a consequence of public concern about BNFL Sellafield
- 1988 Report entitled 'The Northern Ireland Local Authority Environmental Monitoring Programme' was presented to District Councils in the Province by Dr Stephen Harris of the University of Surrey.
- June 1988 Northern Ireland Working Party of Environmental Health Officers recommended that District Councils in Northern Ireland be integrated into LARRMACC (now LARnet) and that a Joint Radiation Committee be formed in the Province comprising elected members and officers from Belfast and the four Environmental Health Groupings of Councils
- Sept 1989 Inaugural meeting of the Joint Radiation Committee to become known as the 'Northern Ireland Radiation Monitoring Co-ordinating Committee' (NIRMCC)
- 1990 1996 Analytical laboratory services contracted to the University of Lancaster
- April 1996 Installation of the ARGUS Continuous Monitoring Network
- 1996 1999 Analytical laboratory services contracted to the University of Southampton
- 1999 2002 Analytical laboratory services contracted to the University of Southampton
- 2002 2005 Analytical laboratory services contracted to the University of Southampton
- 2002 Update of Continuous Gamma Monitoring system to ARGUS 3000
- 2004 Introduction of a NIRMG website: www.nirmg.org.uk
- 2005 2008 Analytical laboratory services contracted to the University of Southampton
- 2008 2011 Analytical laboratory services contracted to the University of Southampton

#### **OBJECTIVES**

- To monitor levels of gamma radioactive contamination of marine biota and sediments in the Irish Sea as a consequence of routine radioactive discharges from the UK mainland and to ensure that doses due to Caesium-137 continue to fall.
- To monitor levels of actinides in sediments from Northern Ireland coastline and in fish/shellfish from the Irish Sea.
- To monitor levels of the beta emitter <sup>99</sup>Tc in shellfish and seaweeds from the Irish Sea.
- To monitor levels of contamination from gamma emitters in freshwater and terrestrial environments in Northern Ireland as a consequence of airborne releases of radioactivity such as that from Chernobyl.
- To provide independent information and data on radioactivity in the environment in order to address public concerns in Northern Ireland.
- To provide a system of radiation monitoring which is capable of adaptation to cope with abnormal/emergency releases and/or situations.

# PARTICIPATING LOCAL AUTHORITIES

# Northern Group

Ballymena Coleraine Carrickfergus Moyle

## Southern Group

Dungannon Newry & Mourne

### Eastern Group

Ards Down Lisburn

# Western Group

Derry Fermanagh Limavady

# **Belfast City Council**

# **CONTENTS**

| Summary      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Main Conclu  | sions for Results April 2008 – March 2011                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|              | Interpretation of Gamma Spectrometry Results<br>Interpretation of Alpha Spectrometry Results<br>Interpretation of Technetium-99 Analysis<br>Interpretation of Carbon-14 Analysis<br>Comparative Radiometric Data<br>Long term trends                                                                                                                                                                                                                               | 2<br>2<br>2<br>2<br>2<br>2<br>3     |
| General info | rmation to assist in understanding Data tables                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                   |
| NORTHERN     | IRELAND DATA: Results April 2008 – March 2011                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
|              | Sample Catalogue by Authority<br>Determinations by Gamma Spectrometry: the Terrestrial Environment<br>Determinations by Gamma Spectrometry: the Marine Environment<br>Results of Transuranic Element Determinations<br>Monitoring the Marine Environment - Analysis for Technetium-99<br>Monitoring the Marine Environment - Analysis for Carbon-14<br>Monitoring the Marine Environment – Instantaneous Gamma Monitoring                                          | 5<br>7<br>8<br>11<br>12<br>13<br>14 |
| APPENDIC     | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| Appendix A   | Sampling sites April 2008 - March 2011                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
|              | List of gamma sampling sites in Northern Ireland<br>Map showing sampling points in Northern Ireland                                                                                                                                                                                                                                                                                                                                                                | 15<br>16                            |
| Appendix B   | Northern Ireland continuous monitoring network                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|              | UK network of Argus continuous gamma monitoring stations<br>Northern Ireland continuous monitoring network<br>Comparative graph for all Northern Ireland Argus stations, April 2008 – March 2009<br>Comparative graph for all Northern Ireland Argus stations, April 2009 – March 2010<br>Comparative graph for all Northern Ireland Argus stations, April 2010 – March 2011<br>Comparative graph for all Northern Ireland Argus stations, April 2008 – March 2011 | 17<br>18<br>19<br>20<br>21<br>22    |
| Appendix C   | Comparative data                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
|              | Selected Gamma Doserate Comparative Data for the Terrestrial Environment<br>Selected Gamma Comparative Data for the Terrestrial Environment<br>Selected Gamma Comparative Data for the Marine Environment<br>Selected Alpha Comparative Data for the Marine Environment<br>Selected <sup>99</sup> Tc Comparative Data for the Marine Environment<br>Selected <sup>14</sup> Carbon Comparative Marine Environment                                                   | 23<br>24<br>25<br>29<br>30<br>32    |
| Appendix D   | Nuclear Environments, Incidents and Events                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
|              | BNFL Sellafield<br>Sellafield Discharges to the Irish Sea 1954-2009<br>Sellafield Discharges to the Irish Sea 1998-2009<br>Transport of dissolved radioactivity in Western European and Arctic waters.<br>Contours of <sup>99</sup> Tc activities in the Irish Sea                                                                                                                                                                                                 | 33<br>34<br>35<br>36<br>37          |

# **CONTENTS (cont.)**

| Appendix E | Radiation Monitoring in the United Kingdom                            |    |
|------------|-----------------------------------------------------------------------|----|
|            | Radiation Monitoring in the United Kingdom                            | 38 |
|            | Fukushima Accident                                                    | 40 |
|            | Dose Limits: Origins & Use                                            | 41 |
|            | Derived Limits & Annual Limits of Intake                              | 41 |
|            | Radiation from natural sources                                        | 42 |
|            | Annual exposure of the UK population from all sources of radiation    | 43 |
|            | Other guidelines                                                      | 44 |
|            | RIMNET                                                                | 44 |
|            | Reference Levels for Radioactive Materials in the Environment         | 45 |
| Appendix F | Laboratory Methodologies                                              |    |
|            | Laboratory Methodologies                                              | 46 |
|            | Gamma Ray Spectroscopy                                                | 46 |
|            | Nominal Detection Limits for Radio-Isotope Analysis                   | 46 |
|            | Spectral Data Reduction                                               | 47 |
|            | Detector Efficiency Calibration                                       | 47 |
|            | Sample Preparation for Gamma Spectroscopy                             | 47 |
|            | Alpha Spectrometry - Introduction                                     | 48 |
|            | Transuranic elements released to the atmosphere                       | 48 |
|            | Recognition of Transuranic Sources                                    | 48 |
|            | Typical <sup>238</sup> Plutonium/ <sup>239,240</sup> Plutonium Ratios | 48 |
|            | Comparative Data                                                      | 48 |
|            | Plutonium in Soils & Sediments                                        | 48 |
|            | Chemical Separation Procedures                                        | 49 |
|            | Alpha Spectrometry                                                    | 49 |
|            | Beta Analysis of Environmental Materials                              | 49 |
|            | Assessment of Data Quality                                            | 50 |
|            | Quality Assurance - Gamma                                             | 51 |
|            | Quality Assurance - Alpha                                             | 52 |
|            | Quality Assurance - Beta                                              | 53 |
|            | Inter-comparison Exercises                                            | 54 |
|            | Quality Control – UKAS Accreditation                                  | 54 |
|            |                                                                       |    |

## Appendix G Glossary of Terms

55

## SUMMARY

This report for the Northern Ireland Radiation Monitoring Group (NIRMG) is a compilation of radiochemical data for foodstuffs and environmental samples collected by the participating authorities during the contract period April 2008 to March 2011. Over the three-year period samples were collected from the marine, estuarine and terrestrial environment that included a variety of locally produced foodstuffs.

An important objective of the NIRMG Scheme is to provide background information for the area over a period of time so that any fluctuations in the radioactive content of environmental materials derived from man-made sources can quickly be identified. The relative proximity of the Sellafield nuclear site with its reported discharges highlights the interest for continuing monitoring, as this is the greatest source of radioactivity concerning Northern Ireland.

The subject of radioactivity monitoring is a complex one and it is occasionally necessary to use technical language although this report endeavours to present the subject in a clear manner by providing regular explanations and a glossary of terms.

The measurements involved a detailed radiochemical analysis of environmental samples collected by the participating local authorities for a wide range of alpha, beta and gamma emitting isotopes. This approach makes a measurement of individual sample types and provides information on most man-made radioactive elements that exist in any given sample and gives a good indication of the nature and magnitude of environmentally significant radioactivity.

Very small levels of anthropogenic (man-made or artificial) radionuclides have been identified in many of the materials examined although none of the levels found is expected to be hazardous to the public. The concentrations found represent a tiny fraction of the national regulatory (cautionary) limits of radiation dose to members of the public. The maximum dose likely to be experienced by an adult living in Northern Ireland, derived from artificial sources of radioactivity, is low and within expected natural variations.

It is notable that the overall trend for most man-made radioactive contamination has been progressively downward since the 1980s.

# MAIN CONCLUSIONS FOR RESULTS APRIL 2008 – MARCH 2011

The results obtained are briefly discussed below and a full set of data is given in the section NORTHERN IRELAND DATA.

Although anthropogenic (man-made or artificial) radionuclides have been identified in many of the materials examined, none of the levels found is expected to be hazardous to the public. The levels represent a small fraction of the national legislative (cautionary) limits of radiation dose to members of the public. All the contamination values are well below the Investigation Levels (i.e. 10% GDL<sup>\*</sup>; HPA).

### INTERPRETATION OF GAMMA SPECTROMETRY RESULTS

The results from all environmental samples show the region to be one of low radiological significance as far as anthropogenic (man-made or artificial) radioactive materials are concerned. Anthropogenic radioisotopes of caesium and americium are seen in minute quantities in some samples from the marine environment. These are probably derived from a combination of the Chernobyl accident, weapons' testing and Sellafield Ltd (Appendix D).

Caesium isotopes in terrestrial samples (soils and vegetation) are due to past depositions from the Chernobyl cloud and weapons' testing. The levels are extremely low in all samples examined.

### INTERPRETATION OF ALPHA SPECTROMETRY RESULTS

Transuranic radionuclides, plutonium and americium, originating from Sellafield discharges and from weapons' tests are all found to be low and should be of no radiological concern. This conclusion is clearly shown by comparing the Generalised Derived Limit (GDL) data with the measured sample activity data (NORTHERN IRELAND DATA). The highest levels of contamination are found in fine-grained marine sediments.

### INTERPRETATION OF TECHNETIUM-99 ANALYSES

The technetium results in samples of edible materials (lobsters, prawns and dulse seaweed) do not show any levels of <sup>99</sup>Tc that would lead to any radiological concerns. The main concentrators of technetium are the seaweeds *Fucus vesiculosus* and *Ascophyllum nodosum* (Table 5 Appendix C). The magnitude of the activity concentration for any particular species reflects the age of the plant, the contact time with contaminated seawater and the trends of marine currents from the eastern Irish Sea. Dulse, which is consumed by some people, is not a significant concentrator of 99Tc. It is known that lobsters can concentrate technetium (Table 5 Appendix C) but the results so far do not indicate any significant radiological problems.

### INTERPRETATION OF CARBON-14 ANALYSES

Carbon-14 has been analysed in marine fish since 2002. The results do not indicate any significant problem and compare well with data given in the Radioactivity in food and the Environment (RIFE) reports.

### COMPARATIVE RADIOMETRIC DATA

Reliability and consistency are checked by comparing data from different monitoring groups or agencies (Appendix C). Quality assurance is evaluated by participating in inter-comparison exercises with international and UK national organisations (e.g.: IAEA and NPL Appendix F).

Notes:

\* GDLs are explained in Appendix E

#### LONG TERM TRENDS

A selected set of data are given in Figure 1 to evaluate some long-term trends with samples taken from the Northern Ireland environment. This shows variation in the activity of <sup>137</sup>Cs with time for sediments, periwinkles and seafish. Data are in Bq/kg. The significant decline in <sup>137</sup>Cs activities is a result of improved clean-up of effluents for the Sellafield Site by SIXEP (Site Ion-eXchange Plant) and EARP (Enhanced Actinide Recovery Plant). The trend for <sup>99</sup>Tc in seaweed (Figure 2a) shows there was a significant increase in activity since 1994 but that it is currently decreasing. This reflects the reported increase and subsequent decrease in discharges of <sup>99</sup>Tc from Sellafield (Figure 2b).



FIGURE 1: Variations in the activity of Cs-137 with time. (\* - Surrey, - Lancaster, - Southampton, - MAFF) (data taken from MAFF, Surry University, Lancaster University, and University of Southampton reports)



#### FIGURE 2a and 2b

2a: <sup>99</sup>Tc activity concentrations in *Fucus vesiculosus* sampled at Balbriggan and Greenore (Eastern Ireland) in the period 1988 – 2007. (Adapted from Smith *et al* (1997)<sup>@</sup>. Additional data supplied by RPII., (<u>www.rpii.ie</u>) for Balbriggan and Greenore, and from this and previous Northern Ireland Radiation Monitoring Group Reports for Newry & Mourne.

#### 2b: Sellafield discharges of <sup>99</sup>Tc to the Irish Sea 1988 – 2009 (BNFL 2009)

Notes:

Smith V., Ryan R.W., Pollard D., Mitchell P.I., & Ryan T.P. Temporal and geographical distribution of <sup>99</sup>Tc in inshore waters around Ireland following increased discharges from Sellafield. Radioprotection - Colloques, <u>32</u>, 71-77 (1997)

#### **GENERAL INFORMATION** TO ASSIST IN UNDERSTANDING DATA TABLES

The data tables that follow contain information on the numerous samples that have been taken during the year, as to the type of sample, where they were taken, their radiological content and the sampling authority. There is also information drawn from other sampling bodies and compared with results found in this report.

The tables are set out as follows:-

#### 1. NORTHERN IRELAND DATA: Results April 2008 - March 2011

This Appendix sets out the results for the year April 2008 - March 2011. A sample catalogue shows the type of samples submitted by each Local Authority, and the gamma spectrometry results are ordered by sample type for the terrestrial and marine environment.

#### 2 APPENDIX C: Selected Comparative Data

This Appendix sets out monitoring and sampling results from the Northern Ireland Radiation Monitoring Group for this year and compares them with results from sampling undertaken by the Food Standards Agency and British Nuclear Fuels plc (BNFL) at Sellafield.

All tables of results give the sample type, the date of sample collection and the measured level of radiological activity from man-made sources either in Becquerels per kilogram (Bq/kg) or Becquerels per litre (Bq/l). Data showing a dash are below detection limits, whereas data with a less than value (e.g. < 1 Bq/kg) are at the detection limit and a signal is seen but is too small to quantify.

A Becquerel describes the rate at which radioactive decay takes place and corresponds to the decay or disintegration of one radioactive atom per second. It is an extremely small measure of radioactivity.

A radionuclide is an unstable form of an element that emits radioactivity. The following radionuclides are referred to in the tables (with the abbreviations used given after):

#### ANTHROPOGENIC

| 134Caesium                   | - | <sup>134</sup> Cs     |
|------------------------------|---|-----------------------|
| 137Caesium                   | - | <sup>137</sup> Cs     |
| 57Cobalt                     | - | <sup>60</sup> Co      |
| 58Cobalt                     | - | <sup>60</sup> Co      |
| 60Cobalt                     | - | <sup>60</sup> Co      |
| <sup>54</sup> Manganese      | - | <sup>54</sup> Mn      |
| <sup>65</sup> Zinc           | - | <sup>65</sup> Zn      |
| <sup>131</sup> Iodine        | - | $^{131}I$             |
| <sup>238</sup> Plutonium     | - | <sup>238</sup> Pu     |
| <sup>239,240</sup> Plutonium | - | <sup>239,240</sup> Pu |
| <sup>241</sup> Americium     | - | <sup>241</sup> Am     |
| 99Technetium                 | - | <sup>99</sup> Tc      |

Note

Other conventions may be used in other literature e.g. <sup>99</sup>Technetium may also be referred to as Technetium-99 or Tc-99.

To assist with understanding the significance of the radiological levels reported, Generalised Derived Limits (GDLs) are included after the tables, where appropriate. A full explanation of GDLs and summarised values are given in Appendix E but they are basically cautionary indicators of levels that should not be exceeded for specific materials and particularly foodstuffs.

# SAMPLE CATALOGUE BY AUTHORITY

# \*\* Belfast City Council

#### \* Belfast

| 09/06/2008 | Sediment |
|------------|----------|
| 01/06/2009 | Sediment |
| 03/06/2010 | Sediment |

#### Eastern Group Environmental Health \*\* Committee

#### Ards \*

| 05/06/2008 | Dulse         |
|------------|---------------|
| 05/09/2008 | Whiting       |
| 05/09/2008 | Mixed Seaweed |
| 05/09/2008 | Silt          |
| 22/06/2009 | Seaweed       |
| 22/06/2009 | Silt          |
| 21/09/2009 | Whiting       |
| 02/02/2010 | Whiting       |
| 03/06/2010 | Dulse         |
| 03/06/2010 | Silt          |
| 19/09/2010 | Whiting       |
|            |               |

#### \* Down (

| 05/06/2008 | Haddock |
|------------|---------|
| 05/06/2008 | Mussels |
| 06/06/2008 | Lobster |
| 09/08/2008 | Silt    |
| 08/09/2008 | Honey   |
| 08/09/2008 | Venison |
| 18/06/2009 | Lobster |
| 22/06/2009 | Haddock |
| 22/06/2009 | Mussels |
| 22/09/2009 | Silt    |
| 07/10/2009 | Venison |
| 01/06/2010 | Haddock |
| 01/06/2010 | Lobster |
| 01/06/2010 | Mussels |
| 18/09/2010 | Venison |
| 21/09/2010 | Mussels |
| 22/09/2010 | Silt    |

#### Lisburn \*

| 10/06/2008 | Water |
|------------|-------|
| 22/06/2009 | Water |
| 07/06/2010 | Water |

### \*\* Northern Group Environmental Health Committee

#### \* Ballymena

| 09/09/2008 | Water |
|------------|-------|
| 22/09/2009 | Water |
| 20/09/2010 | Water |

#### \* Coleraine 13/09/2010

Heather honey

#### \*\* Northern Group Environmental Health Committee

#### \* Carrickfergus

| ai i ickici gus |              |
|-----------------|--------------|
| 06/06/2008      | Coastal silt |
| 06/06/2008      | Mussels      |
| 05/09/2008      | Silt         |
| 17/06/2009      | Silt         |
| 22/06/2009      | Silt         |
| 22/06/2009      | Mussels      |
| 03/06/2010      | Silt         |
| 03/06/2010      | Mussels      |
| 17/09/2010      | Silt         |
|                 |              |

#### \* Moyle

| -          |                   |
|------------|-------------------|
| 06/06/2008 | Dulse             |
| 09/06/2008 | Lobster           |
| 05/09/2008 | Salmon            |
| 05/09/2008 | Whiting           |
| 06/09/2008 | Fucus vesiculosus |
| 05/06/2009 | Fucus vesiculosus |
| 08/06/2009 | Lobster           |
| 17/09/2009 | Dulse             |
| 05/06/2010 | Seaweed           |
| 07/06/2010 | Lobster           |
| 24/09/2010 | Whiting           |
| 24/09/2010 | Duse              |

#### Southern Group Environmental Health \*\* Committee

#### \* Dungannon

| 09/06/2008 | Water |
|------------|-------|
| 23/06/2009 | Water |
| 07/06/2010 | Water |

#### Newry & Mourne \*

| 06/06/2008 | Haddock            |
|------------|--------------------|
| 07/06/2008 | Fucus vesiculosus  |
| 07/06/2008 | Mussels            |
| 07/09/2008 | Heather honey      |
| 08/09/2008 | Whiting            |
| 08/09/2008 | Haddock            |
| 08/09/2008 | Silt               |
| 08/09/2008 | Lobster            |
| 19/06/2009 | Haddock            |
| 21/06/2009 | Fucus vesiculosus  |
| 21/06/2009 | Mussels            |
| 17/09/2009 | Heather Honey      |
| 21/09/2009 | Silt               |
| 21/09/2009 | Mussels            |
| 21/09/2009 | Lobster (Meat)     |
| 21/09/2009 | Lobster (Pancreas) |
| 21/09/2009 | Lobster (Other)    |
| 04/06/2010 | Haddock            |
| 04/06/2010 | Whiting            |
| 04/06/2010 | Lobster            |
| 07/06/2010 | Mussels            |
| 19/09/2010 | Fucus vesiculosus  |
| 19/09/2010 | Silt               |
| 20/09/2010 | Heather Honey      |

# SAMPLE CATALOGUE BY AUTHORITY

#### \*\* Western Group Environmental Health Committee

#### \* Derry

| 08/09/2008 | Whiting |
|------------|---------|
| 08/09/2008 | Haddock |
| 08/09/2008 | Mussels |
| 08/09/2008 | Water   |
| 23/06/2009 | Haddock |
| 23/06/2009 | Whiting |
| 23/06/2009 | Mussels |
| 23/06/2009 | Water   |
| 22/09/2009 | Water   |
| 07/06/2010 | Haddock |
| 07/06/2010 | Whiting |
| 07/06/2010 | Mussels |
| 07/06/2010 | Water   |
| 20/09/2010 | Mussels |
| 20/09/2010 | Water   |
| 22/09/2010 | Haddock |
| 22/09/2010 | Whiting |
|            | 0       |

#### \* Fermanagh 03/09/2008 03/09/2008

17/09/2009

Venison Honey Venison

#### \* Limavady 09/06/2008 09/06/2008

| Fucus vesiculosus |
|-------------------|
| Silt              |
| Fucus vesiculosus |
| Silt              |
| Silt              |
| Fucus vesiculosus |
|                   |

# TABLE 1MONITORING THE TERRESTRIAL ENVIRONMENT

| Date       | Authority          | Туре              | Locality   |                  |                  |                  |                  |                  | Α                | ctivity (I        | Bq/ Kg)           |
|------------|--------------------|-------------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
| * Honey    | 7                  |                   |            | <sup>131</sup> I | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Eastern  | Group Environmen   | ital Health Comm  | nittee     |                  |                  |                  |                  |                  |                  |                   |                   |
| 08/09/2008 | Down               | -                 | Dundrum    | -                | -                | -                | -                | -                | -                | -                 | -                 |
| * Norther  | n Group Environn   | nental Health Co  | mmittee    |                  |                  |                  |                  |                  |                  |                   |                   |
| 13/09/2010 | Coleraine          | Heather Honey     | Garvagh    | -                | -                | -                | -                | -                | -                | -                 | 114               |
| * Souther  | n Group Environn   | nental Health Co  | mmittee    |                  |                  |                  |                  |                  |                  |                   |                   |
| 07/09/2008 | Down/Newry & Mourr | e Heather Honey   | Mournes    | -                | -                | -                | -                | -                | -                | -                 | 19                |
| 17/09/2009 | Down/Newry & Mourr | he Heather Honey  | Mournes    | -                | -                | -                | -                | -                | -                | -                 | 2                 |
| 20/09/2010 | Newry & Mourne     | Heather Honey     | Mournes    | -                | -                | -                | -                | -                | -                | -                 | 18                |
| * Western  | n Group Environm   | ental Health Con  | nmittee    |                  |                  |                  |                  |                  |                  |                   |                   |
| 03/09/2008 | Fermanagh          | -                 | Fermanagh  | -                | -                | -                | -                | -                | -                | -                 | -                 |
| HONEY DE   | RIVED LIMIT assur  | ning 50kg consump | otion p.a. |                  |                  |                  |                  |                  |                  |                   | 1700              |

| Date                                                               | Authority                                 | Туре                                                                 | Locality                                                                    |                  |                  |                  |                  | Activi           | ty (Bq/ H        | Kg wet v          | weight)           |
|--------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
| * Meat                                                             |                                           |                                                                      |                                                                             | <sup>131</sup> I | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Eastern                                                          | Group Enviro                              | nmental Health Com                                                   | mittee                                                                      |                  |                  |                  |                  |                  |                  |                   |                   |
| 08/09/2008<br>07/10/2009<br>18/09/2010                             | Down<br>Down<br>Down                      | Venison<br>Venison<br>Venison                                        | Downpatrick<br>Downpatrick<br>Downpatrick                                   | -<br>-           | -<br>-<br>-      | -<br>-<br>-      | -<br>-<br>-      | -<br>-           | -<br>-           | -<br>-<br>-       | -<br>-<br>-       |
| * Western                                                          | Group Enviro                              | nmental Health Com                                                   | ımittee                                                                     |                  |                  |                  |                  |                  |                  |                   |                   |
| 03/09/2008<br>17/09/2009                                           | Fermanagh<br>Fermanagh                    | Venison<br>Venison                                                   | Brookeborough<br>Colebrook                                                  | -                | -                | -                | -                | -                | -                | -                 | -<br>1            |
| Date                                                               | Authority                                 | Туре                                                                 | Locality                                                                    |                  |                  |                  |                  |                  | Activ            | rity (Bq          | /Litre)           |
| * Water                                                            |                                           |                                                                      |                                                                             |                  |                  |                  |                  |                  |                  | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Eastern                                                          | Group Environ                             | nmental Health Com                                                   | mittee                                                                      |                  |                  |                  |                  |                  |                  |                   |                   |
| 10/06/2008<br>22/06/2009<br>07/06/2010                             | Lisburn<br>Lisburn<br>Lisburn             | Borehole<br>Borehole<br>Borehole                                     | Lambeg<br>Knockmore Hill<br>Knockmore Hill                                  |                  |                  |                  |                  |                  |                  | -<br>-            | -<br>-<br>-       |
| * Norther                                                          | n Group Envir                             | onmental Health Co                                                   | mmittee                                                                     |                  |                  |                  |                  |                  |                  |                   |                   |
| 09/09/2008<br>22/09/2009<br>20/09/2010                             | Ballymena<br>Ballymena<br>Ballymena       | Borehole<br>Borehole<br>Borehole                                     | 100 Railway St,<br>100 Railway Street<br>Railway Street                     |                  |                  |                  |                  |                  |                  | -<br>-            | -<br>-<br>-       |
| * Souther                                                          | n Group Envir                             | onmental Health Cor                                                  | mmittee                                                                     |                  |                  |                  |                  |                  |                  |                   |                   |
| 09/06/2008<br>23/06/2009<br>07/06/2010                             | Dungannon<br>Dungannon<br>Dungannon       | Borehole<br>Private Supply<br>Private Supply                         | Fivemiletown<br>Fivemiletown<br>Fivemiletown                                |                  |                  |                  |                  |                  |                  | -<br>-            | -<br>-            |
| * Western                                                          | Group Enviro                              | nmental Health Com                                                   | ımittee                                                                     |                  |                  |                  |                  |                  |                  |                   |                   |
| 08/09/2008<br>23/06/2009<br>22/09/2009<br>07/06/2010<br>20/09/2010 | Derry<br>Derry<br>Derry<br>Derry<br>Derry | Borehole<br>Spring Well<br>Spring Well<br>Spring Well<br>Spring Well | Claudy<br>Claudy<br>300 Longland Road<br>300 Longland Road<br>Longland Road | l                |                  |                  |                  |                  |                  |                   | -<br>-<br>-       |

Note:: - below limit of detection

# TABLE 2MONITORING THE MARINE ENVIRONMENT

| Date       | Authority        | Туре            | Locality       | Activity (Bq/Kg wet | weight)           |
|------------|------------------|-----------------|----------------|---------------------|-------------------|
| * Fish     |                  |                 |                | <sup>134</sup> Cs   | <sup>137</sup> Cs |
| * Eastern  | Group Environme  | ental Health Co | mmittee        |                     |                   |
| 05/06/2008 | Down             | Haddock         | Irish Sea      | -                   | -                 |
| 05/09/2008 | Ards             | Whiting         | Irish Sea      | -                   | 6                 |
| 05/09/2008 | Moyle            | Salmon          | North Channel  | -                   | -                 |
| 22/06/2009 | Down             | Haddock         | Irish Sea      | -                   | -                 |
| 21/09/2009 | Ards             | Whiting         | Irish Sea      | -                   | 1                 |
| 02/02/2010 | Ards             | Whiting         | Irish Sea      | -                   | 1                 |
| 01/06/2010 | Down             | Haddock         | Irish Sea      | -                   | <1                |
| 19/09/2010 | Ards             | Whiting         | North Atlantic | -                   | <1                |
| * Norther  | n Group Environn | nental Health C | ommittee       |                     |                   |
| 05/09/2008 | Movle            | Whiting         | Irish Sea      | -                   | 2                 |
| 24/09/2010 | Moyle            | Whiting         | North Channel  | -                   | 1                 |
| * Souther  | n Group Environn | nental Health C | ommittee       |                     |                   |
| 06/06/2008 | Newry & Mourne   | Haddock         | Irish Sea      | -                   | 5                 |
| 08/09/2008 | Newry & Mourne   | Whiting         | Irish Sea      | -                   | 7                 |
| 08/09/2008 | Newry & Mourne   | Haddock         | Irish Sea      | -                   | 3                 |
| 19/06/2009 | Newry & Mourne   | Haddock         | Irish Sea      | -                   | <1                |
| 04/06/2010 | Newry & Mourne   | Haddock         | Irish Sea      | -                   | <1                |
| 04/06/2010 | Newry & Mourne   | Whiting         | Irish Sea      | -                   | <1                |
| * Western  | ı Group Environm | ental Health Co | ommittee       |                     |                   |
| 08/09/2008 | Derry            | Whiting         | Malin Head     | -                   | 2                 |
| 08/09/2008 | Derry            | Haddock         | Malin Head     | -                   | -                 |
| 23/06/2009 | Derry            | Haddock         | Malin Head     | -                   | <1                |
| 23/06/2009 | Derry            | Whiting         | Malin Head     | -                   | -                 |
| 07/06/2010 | Derry            | Haddock         | Malin Head     | -                   | -                 |
| 07/06/2010 | Derry            | Whiting         | Malin Head     | -                   | <1                |
| 22/09/2010 | Derry            | Haddock         | Malin Head     | -                   | <1                |
| 22/09/2010 | Derry            | Whiting         | Malin Head     | -                   | -                 |
| GENERALI   | SED DERIVED LIM  | IITS            |                |                     | 700               |

| Date       | Authority         | Туре              | Locality     |                  |                  |                  |                  | Activit          | y (Bq/K          | lg wet w          | eight)            |
|------------|-------------------|-------------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
| * Seawe    | eed               |                   |              | <sup>131</sup> I | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Eastern  | Group Environm    | ental Health Comn | nittee       |                  |                  |                  |                  |                  |                  |                   |                   |
| 05/06/2008 | Ards              | Dulse             | Ballywalter  | -                | -                | -                | -                | -                | -                | -                 | 5                 |
| 05/09/2008 | Ards              | Mixed             | Ballyhalbert | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 22/06/2009 | Ards              | Dulse             | Millisle     | -                | -                | -                | -                | -                | -                | -                 | 6                 |
| 03/06/2010 | Ards              | Dulse             | Ballywalter  | -                | -                | -                | -                | -                | -                | -                 | 4                 |
| * Northe   | rn Group Environi | nental Health Com | mittee       |                  |                  |                  |                  |                  |                  |                   |                   |
| 06/06/2008 | Movle             | Dulse             | Unknown      | -                | -                | -                | -                | -                | -                | -                 | 4                 |
| 06/09/2008 | Moyle             | Fucus vesiculosus | Ballintoy    | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 05/06/2009 | Moyle             | Fucus vesiculosus | Ballintoy    | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 17/09/2009 | Moyle             | Dulse             | Ballintoy    | -                | -                | -                | -                | -                | -                | -                 | 2                 |
| 05/06/2010 | Moyle             | Seaweed           | Ballintoy    | 2                | -                | -                | -                | -                | -                | -                 | -                 |
| 24/09/2010 | Moyle             | Dulse             | Murlough Bay | -                | -                | -                | -                | -                | -                | -                 | 2                 |
| * Souther  | rn Group Environn | nental Health Com | mittee       |                  |                  |                  |                  |                  |                  |                   |                   |
| 07/06/2008 | Newry & Mourne    | Fucus vesiculosus | Warrenpoint  | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 21/06/2009 | Newry & Mourne    | Fucus vesiculosus | Warrenpoint  | -                | -                | -                | -                | -                | -                | -                 | 1                 |
| 19/09/2010 | Newry & Mourne    | Fucus vesiculosus | Warrenpoint  | -                | -                | -                | -                | -                | -                | -                 | <1                |
| * Wester   | n Group Environm  | ental Health Com  | nittee       |                  |                  |                  |                  |                  |                  |                   |                   |
| 09/06/2008 | Limavadv          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 08/09/2008 | Limavady          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 23/06/2009 | Limavady          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 22/09/2009 | Limavady          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 07/06/2010 | Limavady          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 20/09/2010 | Limavady          | Fucus vesiculosus | Ball's Point | -                | -                | -                | -                | -                | -                | -                 | <1                |

Note: - below limit of detection

# TABLE 2MONITORING THE MARINE ENVIRONMENT

| Date        | Authority              | Туре            | Locality                     |                   |                  |                  |                  |                  |                  |                   |                   |
|-------------|------------------------|-----------------|------------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
|             |                        |                 |                              |                   |                  |                  |                  | Activit          | y (Bq/           | Kg dry w          | veight)           |
| * Sedim     | ent                    |                 |                              | <sup>241</sup> Am | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Belfast ( | City Council           |                 |                              |                   |                  |                  |                  |                  |                  |                   |                   |
| 09/06/2008  | Belfast                | Silt            | Belfast Lough                | -                 | -                | -                | -                | -                | -                | -                 | 20                |
| 01/06/2009  | Belfast<br>Belfast     | Silt<br>Silt    | Belfast Lough                | 10<br>7           | -                | -                | -                | -                | -                | -                 | 20<br>13          |
| * Eastern   | Group Environme        | ontal Health Co | ommittee                     | /                 |                  |                  |                  |                  |                  |                   | 15                |
| 05/00/2008  | Anda                   | C:14            | Milliolo                     |                   |                  |                  |                  |                  |                  |                   | 7                 |
| 03/09/2008  | Alus                   | SIII            | Williste<br>Killough Horhour | -                 | -                | -                | -                | -                | -                | -                 | í<br>c            |
| 22/06/2008  | Ards                   | Silt            | Millisle                     | -                 | -                | -                | -                | -                | -                | -                 | 4                 |
| 22/00/2009  | Down                   | Silt            | Killough Harbour             | - 1               | -                | -                | -                | _                | -                | -                 | 4                 |
| 03/06/2010  | Ards                   | Silt            | Millisle                     | <1                | _                | -                | _                | _                | _                | _                 | 3                 |
| 22/09/2010  | Down                   | Silt            | Killough Harbour             | 1                 | -                | -                | -                | -                | -                | -                 | 6                 |
| * Norther   | n Group Environn       | nental Health ( | Committee                    | -                 |                  |                  |                  |                  |                  |                   | -                 |
| 06/06/2008  | Carrickforms           | Coastal silt    | Carrickforms                 |                   |                  |                  |                  |                  |                  |                   | 5                 |
| 05/09/2008  | Carrickfergus          | Silt            | Carrickfergus                | -                 | -                | -                | -                | _                | -                | -                 | 5                 |
| 22/06/2009  | Carrickfergus          | Silt            | Carrickfergus                | -                 | -                | -                | -                | -                | -                | -                 | 5                 |
| 17/06/2009  | Carrickfergus          | Silt            | Carrickfergus                | 1                 | _                | _                | _                | _                | _                | _                 | 3                 |
| 03/06/2010  | Carrickfergus          | Silt            | Carrickfergus                | 2                 | -                | -                | -                | -                | -                | -                 | 4                 |
| 17/09/2010  | Carrickfergus          | Silt            | Carrickfergus                | 2                 | -                | -                | -                | -                | -                | -                 | 3                 |
| * Souther   | n Group Environn       | iental Health ( | Committee                    |                   |                  |                  |                  |                  |                  |                   |                   |
| 08/09/2008  | Newry & Mourne         | Silt            | Warrennoint                  |                   | _                |                  |                  | _                | _                |                   | 16                |
| 21/09/2009  | Newry & Mourne         | Silt            | Warrenpoint                  | 2                 | _                | -                | -                | _                | -                | _                 | 21                |
| 19/09/2010  | Newry & Mourne         | Silt            | Warrenpoint                  | 2                 | -                | -                | -                | -                | -                | -                 | 15                |
| * Western   | Group Environm         | ental Health C  | ommittee                     |                   |                  |                  |                  |                  |                  |                   |                   |
| 00/06/0000  | т.<br>т. 1             | 0.1             | G '11 1 D'1                  |                   |                  |                  |                  |                  |                  |                   | 2                 |
| 09/06/2008  | Limavady               | Silt            | Carrickhugh Bridge           | -                 | -                | -                | -                | -                | -                | -                 | 3                 |
| 08/09/2008  | Limavady               | Silt            | Carricknugh Bridge           | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| 23/00/2009  | Limavady               | SIII            | Carrielshugh Bridge          | -                 | -                | -                | -                | -                | -                | -                 | 2                 |
| 22/09/2009  | Limavady               | Silt            | Carrickhugh Bridge           | 2                 | -                | -                | -                | -                | -                | -                 | 5                 |
| 07/06/2010  | Limavady               | Silt            | Lough Foyle                  | -                 | -                | -                | -                | _                | -                | -                 | 5                 |
| 07/00/2010  | Liniavady              | SIIt            | Lough Poyle                  | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| GENERALI    | SED DERIVED LIM        | ITS             |                              |                   |                  |                  |                  |                  |                  | 2000              | 5000              |
| Date        | Authority              | Type            | Locality                     |                   |                  |                  |                  |                  |                  |                   |                   |
|             |                        | - 5 F -         |                              |                   |                  |                  |                  | Activ            | rity (Bq         | / Wet we          | eight)            |
|             |                        |                 |                              |                   |                  |                  |                  |                  |                  |                   |                   |
| * Shellfi   | sh                     |                 |                              | <sup>131</sup> I  | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Eastern   | <b>Group Environme</b> | ental Health Co | ommittee                     |                   |                  |                  |                  |                  |                  |                   |                   |
| 05/06/2008  | Down                   | Mussels         | Killough Harbour             | -                 | -                | -                | -                | -                | -                | -                 | 3                 |
| 06/06/2008  | Down                   | Lobster         | Killough Harbour             | -                 | -                | -                | -                | -                | -                | -                 | _                 |
| 18/06/2009  | Down                   | Lobster         | St. John's Point             | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| 22/06/2009  | Down                   | Mussels         | Killough Harbour             | -                 | -                | -                | -                | -                | -                | -                 | <1                |
| 01/06/2010  | Down                   | Lobster         | Portavogie                   | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| 01/06/2010  | Down                   | Mussels         | Killough Harbour             | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| 21/09/2010  | Down                   | Mussels         | Dundrum Bay                  | -                 | -                | -                | -                | -                | -                | -                 | -                 |
| GENERA      | LISED DERIVE           | D LIMITS        |                              |                   |                  |                  |                  |                  |                  |                   |                   |
| JENERA      | LIGED DERIVE           | Molluscs        |                              |                   |                  |                  |                  |                  |                  | 3000              | 4000              |
|             |                        | Crustacea       |                              |                   |                  |                  |                  |                  |                  | 3000              | 4000              |

Note:

- below limit of detection

# TABLE 2 MONITORING THE MARINE ENVIRONMENT

| Date       | Authority         | Туре           | Locality         |                  |                  |                  |                  |                  |                  |                   |                   |
|------------|-------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|
|            |                   |                |                  |                  |                  |                  |                  | Activi           | ty (Bq/          | Wet we            | ight)             |
| * Shellfi  | sh                |                |                  | <sup>131</sup> I | <sup>54</sup> Mn | <sup>65</sup> Zn | <sup>57</sup> Co | <sup>58</sup> Co | <sup>60</sup> Co | <sup>134</sup> Cs | <sup>137</sup> Cs |
| * Norther  | n Group Environm  | ental Health   | Committee        |                  |                  |                  |                  |                  |                  |                   |                   |
| 06/06/2008 | Carrickfergus     | Mussels        | Carrickfergus    | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 09/06/2008 | Moyle             | Lobster        | Northern Channel | -                | -                | -                | -                | -                | -                | -                 | 3                 |
| 22/06/2009 | Carrickfergus     | Mussels        | Carrickfergus    | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 08/06/2009 | Moyle             | Lobster        | North Channel    | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 03/06/2010 | Carrickfergus     | Mussels        | Carrickfergus    | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 07/06/2010 | Moyle             | Lobster        | North Channel    | -                | -                | -                | -                | -                | -                | -                 | -                 |
| * Souther  | n Group Environm  | ental Health   | Committee        |                  |                  |                  |                  |                  |                  |                   |                   |
| 07/06/2008 | Newry & Mourne    | Mussels        | Warrenpoint      | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 08/09/2008 | Newry & Mourne    | Lobster        | Irish Sea        | -                | -                | -                | -                | -                | -                | -                 | 2                 |
| 21/06/2009 | Newry & Mourne    | Mussels        | Warrenpoint      | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 21/09/2009 | Newry & Mourne    | Mussels        | Warrenpoint      | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 21/09/2009 | Newry & Mourne    | Lobster        | Irish Sea        | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 21/09/2009 | Newry & Mourne    | Lobster        | Irish Sea        | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 04/06/2010 | Newry & Mourne    | Lobster        | Irish Sea        | -                | -                | -                | -                | -                | -                | -                 | <1                |
| 07/06/2010 | Newry & Mourne    | Mussels        | Warrenpoint      | -                | -                | -                | -                | -                | -                | -                 | -                 |
| * Western  | n Group Environmo | ental Health ( | Committee        |                  |                  |                  |                  |                  |                  |                   |                   |
| 08/09/2008 | Derry             | Mussels        | Longfield        | -                | -                | _                | -                | -                | -                | -                 | -                 |
| 23/06/2009 | Derry             | Mussels        | Longfield        | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 07/06/2010 | Derry             | Mussels        | Longfield        | -                | -                | -                | -                | -                | -                | -                 | -                 |
| 20/09/2010 | Derry             | Mussels        | Longfield        | -                | -                | -                | -                | -                | -                | -                 | <1                |
| CENED 4    |                   |                |                  |                  |                  |                  |                  |                  |                  |                   |                   |
| GENERA     | LISED DERIVE      | DLIMITS        |                  |                  |                  |                  |                  |                  |                  |                   | 1000              |
|            |                   | Molluses       |                  |                  |                  |                  |                  |                  |                  | 3000              | 4000              |
|            |                   | Crustacea      |                  |                  |                  |                  |                  |                  |                  | 3000              | 4000              |

Note:

below limit of detection -

# TABLE 3RESULTS OF TRANSURANIC ELEMENT DETERMINATIONS

| Date        | Autho            | ority             | Туре    | Locality           |                   |                       |                   |
|-------------|------------------|-------------------|---------|--------------------|-------------------|-----------------------|-------------------|
|             |                  |                   |         |                    |                   | Activity (Bq/         | ′kg)              |
|             |                  |                   |         |                    | <sup>238</sup> Pu | <sup>239,240</sup> Pu | <sup>241</sup> Am |
| * Belfast C | City Council     |                   |         |                    |                   |                       |                   |
| 09/06/2008  | Belfast          | Silt              |         | Belfast Lough      | 1.73              | 9.74                  | 10.80             |
| 01/06/2009  | Belfast          | Silt              |         | Belfast Lough      | 1.73              | 8.33                  | 12.00             |
| 03/06/2010  | Belfast          | Silt              |         | Belfast Lough      | 1.60              | 9.06                  | 14.18             |
| * Eastern   | Group Environme  | ental Health Comr | nittee  |                    |                   |                       |                   |
| 05/06/2008  | Down             | Mussels           |         | Killough Harbour   | 0.03              | 0.16                  | 0.19              |
| 05/09/2008  | Ards             | Silt              |         | Millisle           | 0.42              | 2.60                  | 3.54              |
| 22/06/2009  | Ards             | Silt              |         | Millisle           | 0.17              | 1.25                  | 0.96              |
| 22/06/2009  | Down             | Mussels           |         | Killough Harbour   | -                 | 0.13                  | 0.10              |
| 03/06/2010  | Ards             | Silt              |         | Millisle           | 0.43              | 1.58                  | 2.51              |
| 01/06/2010  | Down             | Lobster           |         | Portavogie         | < 0.02            | 0.33                  | 0.13              |
| 01/06/2010  | Down             | Mussels           |         | Killough Harbour   | 0.13              | 0.67                  | 0.20              |
| * Northern  | ı Group Environn | nental Health Con | ımittee |                    |                   |                       |                   |
| 06/06/2008  | Carrickfergus    | Silt              |         | Carrickfergus      | 0.40              | 2.96                  | 3.59              |
| 06/06/2008  | Carrickfergus    | Mussels           |         | Carrickfergus      | 0.05              | 0.32                  | 0.57              |
| 22/06/2009  | Carrickfergus    | Silt              |         | Carrickfergus      | 0.48              | 3.20                  | 2.30              |
| 22/06/2009  | Carrickfergus    | Mussels           |         | Carrickfergus      | 0.08              | 0.35                  | 0.49              |
| 03/06/2010  | Carrickfergus    | Silt              |         | Carrickfergus      | 0.54              | 3.41                  | 5.18              |
| 03/06/2010  | Carrickfergus    | Mussels           |         | Carrickfergus      | 0.08              | 0.48                  | 0.78              |
| * Southern  | ı Group Environn | nental Health Con | mittee  |                    |                   |                       |                   |
| 07/06/2008  | Newry & Mourne   | Mussels           |         | Warrenpoint        | 0.02              | 0.10                  | 0.13              |
| 08/09/2008  | Newry & Mourne   | Sediment          |         | Warrenpoint        | 0.64              | 3.72                  | 2.71              |
| 21/06/2009  | Newry & Mourne   | Mussels           |         | Warrenpoint        | 0.03              | 0.14                  | -                 |
| 21/06/2009  | Newry & Mourne   | Fucus vesiculosus | 6       | Warrenpoint        | 0.06              | 0.21                  | 0.02              |
| 21/09/2009  | Newry & Mourne   | Silt              |         | Warrenpoint        | 0.58              | 5.94                  | 2.88              |
| 21/09/2009  | Newry & Mourne   | Mussels           |         | Warrenpoint        | 0.02              | 0.12                  | 0.08              |
| 19/09/2010  | Newry & Mourne   | Silt              |         | Warrenpoint        | 0.73              | 3.62                  | 3.66              |
| 07/06/2010  | Newry & Mourne   | Mussels           |         | Warrenpoint        | < 0.01            | 0.11                  | 0.12              |
| * Western   | Group Environm   | ental Health Com  | mittee  |                    |                   |                       |                   |
| 08/09/2008  | Derry            | Mussels           |         | Longfield          | 0.04              | 0.13                  | 0.16              |
| 08/09/2008  | Limavady         | Silt              |         | Carrickhugh Bridge | 0.05              | 0.11                  | 0.96              |
| 23/06/2009  | Derry            | Mussels           |         | Longfield          | -                 | 0.03                  | 0.10              |
| 22/09/2009  | Limavady         | Silt              |         | Carrickhugh Bridge | 0.64              | 4.29                  | 5.89              |
| 07/06/2010  | Limavady         | Silt              |         | Carrickhugh Bridge | 0.56              | 1.70                  | 3.05              |
| 20/09/2010  | Derry            | Mussels           |         | Longfield          | 0.03              | 0.14                  | 0.20              |
|             |                  |                   |         |                    |                   |                       |                   |

Note:

- below limit of detection

- All biota data are on a wet weight basis.

- Silt/sediment reported as dry weight

Silt/sediment reported as dry weight

| Date                     | Authority                        | Туре                         | Locality                   | Activity (Bq/kg) |
|--------------------------|----------------------------------|------------------------------|----------------------------|------------------|
|                          |                                  |                              |                            | <sup>99</sup> Tc |
| * Eastern                | Group Environme                  | ntal Health Committe         | e                          |                  |
| 05/06/2008               | Down                             | Mussels                      | Killough Harbour           | 12               |
| 05/06/2008               | Down                             | Lobster                      | St John's Point            | 34               |
| 05/06/2008               | Ards                             | Dulse                        | Ballywalter                | 14               |
| 05/09/2008               | Ards                             | Seaweed                      | Ballyhalbert               | 80               |
| 22/06/2009               | Ards                             | Silt                         | Millisle                   | 1                |
| 18/06/2009               | Down                             | Lobster                      | St. John's Point           | 3                |
| 22/06/2009               | Down                             | Mussels                      | Killough Harbour           | 2                |
| 22/06/2009               | Ards                             | Dulse                        | Millisle                   | -                |
| 03/06/2010               | Ards                             | Silt                         | Millisle                   | <5               |
| 01/06/2010               | Down                             | Lobster                      | Portavogie                 | 53               |
| 01/06/2010               | Down                             | Mussels                      | Killough Harbour           | 8                |
| 03/06/2010               | Ards                             | Dulse                        | Ballywalter                | <8               |
| • Northerr               | ı Groun Environm                 | ental Health Commit          | tee                        |                  |
| 06/06/2008               | Movle                            | Dulse                        | Unknown                    | 25               |
| 09/06/2008               | Moyle                            | Lobster                      | Northern Channel           | 39               |
| 06/06/2008               | Carrickfergus                    | Mussels                      | Carrickfergus              | 156              |
| 06/09/2008               | Moyle                            | Seaweed                      | Ballintoy                  | 115              |
| 22/06/2009               | Carrickfergus                    | Silt                         | Carrickfergus              | 2                |
| 22/06/2009               | Carrickfergus                    | Mussels                      | Carrickfergus              | 19               |
| 08/06/2009               | Moyle                            | Lobster                      | North Channel              | 10               |
| 05/06/2009               | Moyle                            | Fucus vesiculosus            | Ballintoy                  | 7                |
| 17/09/2009               | Moyle                            | Dulse                        | Ballintoy                  | 4                |
| 03/06/2010               | Carrickfergus                    | Mussels                      | Carrickfergus              | 56               |
| 07/06/2010               | Moyle                            | Lobster                      | North Channel              | 5                |
| 05/06/2010               | Moyle                            | Seaweed                      | Ballintoy                  | 26               |
| 24/09/2010               | Moyle                            | Dulse                        | Murlough Bay               | <7               |
| * Southern               | ı Group Environm                 | ental Health Commit          | tee                        |                  |
| 07/06/2008               | Newry & Mourne                   | Mussels                      | Warrenpoint                | 63               |
| 07/06/2008               | Newry & Mourne                   | Fucus vesiculosus            | Warrenpoint                | 215              |
| 08/09/2008               | Newry & Mourne                   | Lobster                      | Irish Sea                  | 159              |
| 21/06/2009               | Newry & Mourne                   | Mussels                      | Warrenpoint                | 11               |
| 21/06/2009               | Newry & Mourne                   | Fucus vesiculosus            | Warrenpoint                | 385              |
| 21/09/2009               | Newry & Mourne                   | Lobster (Pancreas)           | Irish Sea                  | 165              |
| 04/06/2010               | Newry & Mourne                   | Lobster                      | Irish Sea                  | 65               |
| 07/06/2010<br>19/09/2010 | Newry & Mourne<br>Newry & Mourne | Mussels<br>Fucus vesiculosus | Warrenpoint<br>Warrenpoint | 28<br>423        |
|                          | C F ·                            |                              |                            |                  |
| * Western                | Group Environm                   | ental Health Commit          | tee                        |                  |
| 09/06/2008               | Limavady                         | Fucus vesiculosus            | Ball's Point               | 10               |
| 08/09/2008               | Limavady                         | Fucus vesículosus            | Ball's Point               | 9                |
| 08/09/2008               | Derry                            | Mussels                      | Longfield                  | 3                |
| 23/00/2009               | Limayady                         | Fucus vesiculosus            | Ball's Point               | 2                |
| 22/09/2009               | Limayady                         | Fucus vesiculosus            | Ball's Point               | 4                |
| 07/06/2010               | Derry                            | Mussels                      | Longfield                  | 43               |
| 20/09/2010               | Derry                            | Mussels                      | Longfield                  | 5                |
| 07/06/2010               | Limavady                         | Fucus vesiculosus            | Ball's Point               | 11               |
| 20/09/2010               | Limavady                         | Fucus vesiculosus            | Ball's Point               | 7                |

- 12 -

# TABLE 5ANALYSIS FOR CARBON-14

| Date       | Authority        | Туре            | Locality      |                             |
|------------|------------------|-----------------|---------------|-----------------------------|
|            |                  |                 |               | Activity (Bq/kg wet weight) |
|            |                  |                 |               | <sup>14</sup> C             |
| * Eastern  | Group Environme  | ntal Health Co  | mmittee       |                             |
| 05/06/2008 | Down             | Haddock         | Irish Sea     | 75                          |
| 22/06/2009 | Down             | Haddock         | Irish Sea     | 24                          |
| 01/06/2010 | Down             | Haddock         | Irish Sea     | 31                          |
| * Northern | n Group Environn | nental Health C | Committee     |                             |
| 05/09/2008 | Moyle            | Salmon          | North Channel | 24                          |
| 24/09/2010 | Moyle            | Whiting         | North Channel | 35                          |
| * Southern | n Group Environm | iental Health C | Committee     |                             |
| 06/06/2008 | Newry & Mourne   | Haddock         | Irish Sea     | 145                         |
| 08/09/2008 | Newry & Mourne   | Haddock         | Irish Sea     | 25                          |
| 19/06/2009 | Newry & Mourne   | Haddock         | Irish Sea     | 25                          |
| 04/06/2010 | Newry & Mourne   | Haddock         | Irish Sea     | 30                          |
|            |                  |                 |               |                             |

### \* Western Group Environmental Health Committee

| 08/09/2008 | Derry | Haddock | Irish Sea  | 12 |
|------------|-------|---------|------------|----|
| 23/06/2009 | Derry | Haddock | Malin Head | 20 |
| 07/06/2010 | Derry | Haddock | Malin Head | 29 |

Notes:

Measurements given in 'Radioactivity in Food and the Environment, 2001' for fish in the Irish Sea are in range 41 - 120 Bq/kg wet weight

# TABLE 6INSTANTANEOUS GAMMA MONITORING

The following data were collected with samples submitted for gamma and alpha analysis.

|             |                  |                  |                    | Doserate µGy/hr |
|-------------|------------------|------------------|--------------------|-----------------|
| * Belfast C | City Council     |                  |                    |                 |
| 01/06/2009  | Belfast          | Silt             | Belfast Lough      | 0.082           |
| 03/06/2010  | Belfast          | Silt             | Belfast Lough      | 0.081           |
| * Eastern   | Group Environme  | ntal Health Com  | mittee             |                 |
| 05/09/2008  | Ards             | Sediment         | Millisle           | 0.067           |
| 22/06/2009  | Ards             | Silt             | Millisle           | 0.063           |
| 03/06/2010  | Ards             | Silt             | Millisle           | 0.106           |
| * Southerr  | n Group Environm | ental Health Co  | mmittee            |                 |
| 08/09/2008  | Newry & Mourne   | Sediment         | Warrenpoint        | 0.096           |
| 21/06/2009  | Newry & Mourne   | Silt             | Warrenpoint        | 0.09            |
| 21/09/2009  | Newry & Mourne   | Silt             | Warrenpoint        | 0.09            |
| 07/06/2010  | Limavady         | Silt             | Carrickhugh        | 0.095           |
| 19/09/2010  | Limavady         | Silt             | Warrenpoint        | 0.1             |
| * Western   | Group Environme  | ental Health Con | nmittee            |                 |
| 08/09/2008  | Limavady         | Sediment         | Carrickhugh Bridge | 0.076           |
| 23/06/2009  | Limavady         | Silt             | Carrickhugh Bridge | 0.056           |
| 22/09/2009  | Limavady         | Silt             | Carrickhugh Bridge | 0.053           |
| 07/06/2010  | Limavady         | Silt             | Carrickhugh Bridge | 0.06            |

| IN         | UKI HEKN IF      | LAND SAMEL           | LSILD             |  |
|------------|------------------|----------------------|-------------------|--|
| Map<br>no. | Details          | Locality             | Grid<br>reference |  |
| Polfost    | City Council     |                      |                   |  |
| 1          | Belfast          | Belfast Lough        | J 350 794         |  |
| Eastern    | n Group Environn | nental Health Commi  | ittee             |  |
| 2          | Ards             | Millisle             | J 601 755         |  |
| 3          | Ards             | Ballywalter          | J 635 690         |  |
| 4          | Ards             | Ballyhalbert         | J 661 620         |  |
| *          | Ards             | Irish Sea            | V11a              |  |
| 5          | Down             | Dundrum              | J 409 373         |  |
| 6          | Down             | St John's Point      | J 530 330         |  |
| 7          | Down             | Killough Harbour     | J 538 366         |  |
| 8          | Down             | Ballyhornan          | J 580 380         |  |
| *          | Down             | Downpatrick          | J347347           |  |
| 9          | Down             | Mount Panther Estate | J 410 377         |  |
| 10         | Down             | Killough Harbour     | J539368           |  |
| 11         | Lisburn          | Lambeg               | J 283 664         |  |
| Northe     | rn Group Enviror | imental Health Com   | nittee            |  |
| 12         | Ballymena        | Ballymena            | D 105 024         |  |
| 13         | Carrickfergus    | Carrickfergus        | J 429 882         |  |
| 14         | Carrickfergus    | Carrickfergus        | J 375 842         |  |
| 15         | Moyle            | Cushendall           | D 244 285         |  |
| 16         | Moyle            | North Channel        | D 010 550         |  |
| 17         | Moyle            | Ballintoy            | D 037 457         |  |
| 18         | Moyle            | Waterfoot            | D 248 265         |  |
| 19         | Moyle            | Northern Channel     | D 260 410         |  |
| *          | Moyle            | *                    | *                 |  |
| 20         | Moyle            | Cushendall           | D 234 275         |  |
| Souther    | rn Group Environ | mental Health Comm   | nittee            |  |
| *          | Armagh           | *                    | *                 |  |
| *          | Banbridge        | Long Seefin          | *                 |  |
| *          | Dungannon        | Fivemiletown         | *                 |  |
| *          | Dungannon        | *                    | *                 |  |
| *          | Craigavon        | *                    | *                 |  |
| *          | Newry & Mourne   | *                    | *                 |  |
| *          | Newry & Mourne   | Irish Sea            | *                 |  |
| 21         | Newry & Mourne   | Warrenpoint          | J 142 180         |  |
| 22         | Newry & Mourne   | Warrenpoint          | J 153 183         |  |
| 23         | Newry & Mourne   | Ballyedmond          | J 212 145         |  |
| Wester     | n Group Environ  | mental Health Comm   | ittee             |  |
| *          | Derry            | *                    | *                 |  |
| 24         | Derry            | Longfield Bank       | C 545 235         |  |
| 25         | Derry            | Derry                | C 545 245         |  |
| 26         | Derry            | Claudy               | C 553 043         |  |
| *          | Derry            | *                    | *                 |  |
| 27         | Limavady         | Carrickhugh Bridge   | C 603 230         |  |

# NORTHERN IRELAND SAMPLE SITES

\* grid reference unknown

Limavady

28

Ball's Point

C 644 300



# FIGURE A.1

# NORTHERN IRELAND SAMPLING SITES APRIL 2008 – MARCH 2011



# FIGURE B.1: THE UK NETWORK OF ARGUS CONTINUOUS GAMMA MONITORING STATIONS (www.environment.org.uk)

### NORTHERN IRELAND CONTINUOUS MONITORING ARGUS NETWORK

In 1994, the Northern Ireland Radiation Monitoring Group (NIRMG) investigated the feasibility of installing a network of gamma radiation monitoring stations within district councils in Northern Ireland. These unattended stations would be required to provide reliable regularly updated information about background gamma radiation and, in the event of an increase in background, would be required to provide an automatic comprehensive alert warning.

Representatives from NIRMG visited a number of sites in the North-East of England where a variety of installed systems were available in a geographically small area. It was recognised that, in addition to providing information on background gamma radiation and alerting in an emergency, provision of an automated system would significantly reduce the staff resources required for the manual operation of the Mini 6-80 instruments for instantaneous gamma monitoring of background.

Following a report, of this visit, a specification of the equipment needed for a networked system was prepared and quotations were sought from prospective suppliers in Great Britain. A detailed assessment of each system was undertaken together with costs and a recommendation made to NIRMG that Argus be employed to install a network of five outstations in Northern Ireland linked to a host computer based in Belfast.

In April 1996, the equipment was installed and made operational at the sites named below and a 24-hour communications procedure was established to provide notification of an alert from any outstation to a designated contact officer.

| Authority              | Site of Outstation                  |
|------------------------|-------------------------------------|
| Belfast City Council   | Linenhall Street, Belfast           |
| EGEHC                  | Harbour Master's Office, Portavogie |
| WGEHC                  | Mountjoy Road, Omagh                |
| SGEHC                  | Sports Centre, Kilkeel              |
| Northern Group Systems | Cloonavin, Coleraine                |

The Belfast Argus site was shut down in May 2010 to allow for its relocation (in June 2011) from Dunbar Street to the Cecil Ward Building, 4-10 Linenhall Street, Belfast, BT2 8BP.

#### Argus Data Logging

In the original ARGUS installation each outstation had its own remote station management software allowing access to background gamma readings accumulated over successive ten-minute periods. The stations also transferred results to the host computer in Belfast by modem connection. Using a Windows-based software package, ADVENT, data accessed remotely by PC could be viewed for each outstation. Local data were downloaded into spreadsheet or as a graph plotting average readings at two hourly intervals in nanograys/hour. The host computer in Belfast also checked and maintained each outstation at all times, ensuring optimum reliability and data integrity.

#### **ARGUS 3000**

An updated ARGUS system is now available via the Internet (<u>www.environment.org.uk</u>). After 24 hours all data are available on the Internet through a standard web browser. Parameters for alert levels may be updated by individual station owners, text messages sent to nominated phones and up-to-the-minute data may be viewed on a secure private website. The system is built with standard PC components and consequently it can be maintained by in-house IT personnel. Any software updates and improvements will be available from the Internet. In addition, all Northern Ireland monitoring sites have been upgraded to full meteorological stations providing weather data (wind speed and direction, atmospheric pressure, ambient temperature and rainfall) as well as a gamma detector.

#### Data for January 2008 – December 2010

Data downloaded from the central database at <u>www.environment.org.uk</u> are summarised in the following three graphs. The major peaks shown in the Portavogie and Coleraine data are the result of equipment being calibrated.



-19-



-20-

APPENDIX B



-21-



-22-

## TABLE C.1

#### SELECTED GAMMA DOSERATE COMPARATIVE DATA

|    | Ground type            | Locality                                                           | Activity (nGyh <sup>-1</sup> ) |
|----|------------------------|--------------------------------------------------------------------|--------------------------------|
| 1. | Silt                   | Belfast Lough (06/09)                                              | 82                             |
|    | Sediment               | Ards, Millisle (09/08)                                             | 67                             |
|    | Silt                   | Newry & Mourne, Warrenpoint (06/09)                                | 90                             |
|    | Silt                   | Limavady, Carrickhugh (06/09)                                      | 56                             |
|    | Silt                   | Limavady, Warrenpoint (09/10)                                      | 100                            |
| 2. | Sand                   | Sellafield (2004 – mean of 4 measurements)                         | 78                             |
|    | Salt marsh             | Ravenglass - Carlton Marsh (2004 – mean of 4 measurements)         | 170                            |
|    | Mud/sand               | Ravenglass - Raven Villa (2004 - mean of 4 measurements)           | 110                            |
|    | Sand                   | Whitebayen outer barbour (2005)                                    | 83<br>110                      |
|    | Sand                   | Sellafield beach $(2005 - \text{mean of } 2 \text{ measurements})$ | 83                             |
|    | Salt marsh             | Ravenglass - Carleton Marsh (2005)                                 | 160                            |
|    | Salt marsh/mud         | Ravenglass - Raven Villa (2005 - mean of 7 measurements)           | 140                            |
|    | Mussel bed             | Drigg Barn Scar (2005 - mean of 4 measurements)                    | 85                             |
|    | Sand                   | Sellafield beach (2006 – mean of 2 measurements)                   | 90                             |
|    | Salt marsh/mud         | Ravenglass - Carlton Marsh (2006 - mean of 2 measurements)         | 150                            |
|    | Salt Marsh/Mud         | Ravenglass - Raven Villa (2006 - mean of 3 measurements)           | 150                            |
|    | Mussel bed             | Drigg Barn Scar (2006 - mean of 4 measurements)                    | 83                             |
|    | Sand                   | Whitehaven – outer harbour (2006 - mean of 3 measurements)         | 100                            |
|    | Mud                    | Ravenglass - Ford (2009 – mean of 2 measurements)                  | 120                            |
|    | Salt Marsh             | Ravenglass – Raven Villa (2009 – mean of 3 measurements)           | 160                            |
|    | Salt Marsh<br>Mud/Sand | Ravenglass - Carlton Marsh (2009)                                  | 140                            |
|    | Mud/Sallu<br>Mud       | Ravenglass – Samon garun (2009)<br>Ravenglass – Ford (2010)        | 120                            |
|    | Salt Marsh             | Ravenglass – Raven Villa (2010) – mean of 3 measurements)          | 110                            |
|    | Salt Marsh             | Ravenglass - Carlton Marsh (2010)                                  | 140                            |
|    | Mud/Sand               | Ravenglass – salmon garth (2010)                                   | 110                            |
| 3  | Silt                   | Belfast Lough (1/97)                                               | 70                             |
|    | Silt                   | Warrenpoint, Newry & Mourne (6/97)                                 | 88                             |
|    | Silt                   | Derry (9/97)                                                       | 68                             |
|    | Silt                   | Millisle (11/97)                                                   | 55                             |
|    | Silt                   | Carrickhugh, Limavady (1/98)                                       | 50                             |
|    | Silt                   | Warrenpoint, Newry & Mourne (6/98)                                 | 80                             |
|    | Silt                   | Warranpoint Newry & Mourne (2/00)                                  | 40                             |
|    | Silt                   | Culmore Point Derry (3/00)                                         | 80<br>50                       |
|    | Sand                   | Butterlump Rock Ballyhalbert (4/01)                                | 100                            |
|    | Silt                   | Warrenpoint, Newry & Mourne (9/02)                                 | 90                             |
|    | Silt                   | Warrenpoint, Newry & Mourne (9/02)                                 | 90                             |
|    | Silt                   | Belfast Lough (6/03)                                               | 70                             |
|    | Silt                   | Limavady (6/04)                                                    | 70                             |
|    | Silt                   | Limavady (9/05)                                                    | 48                             |
| 4. | Mud/Silt               | Ravenglass (2004 – mean of 4 measurements)                         | 150                            |
|    | Mud/silt               | Whitehaven - outer harbour (2004 – mean of 12 measurements)        | 140                            |
|    | Dunes & grass banks    | Sellatield (2004)                                                  | 110                            |
|    | Satumarsn<br>Mud/cilt  | Whitebayan outer berbour (2006 mean of 12 measurements)            | 200                            |
|    | Sand                   | Sellafield (2006 – mean of 12 measurements)                        | 130                            |
|    | Saltmarsh              | Rayenglass - Rayen Villa (2008 – mean of 2 measurements)           | 140                            |
|    | Mud/silt               | Whitehaven - outer harbour (2008 – mean of 10 measurements)        | 120                            |
|    | Sand                   | Sellafield (2008 – mean of 11 measurements)                        | 160                            |
|    | Saltmarsh              | Ravenglass - Raven Villa (2009 – mean of 2 measurements)           | 180                            |
|    | Mud/silt               | Whitehaven - outer harbour (2009 - mean of 11 measurements)        | 130                            |
|    | Sand                   | Sellafield (2009 - mean of 12 measurements)                        | 130                            |

Notes:

1.

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) 2.

2. 3. 4. Results from previous Northern Ireland Radiation Monitoring Group Reports Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009)

#### TABLE C.2 SELECTED GAMMA COMPARATIVE DATA FOR THE TERRESTRIAL ENVIRONMENT

|      | Category       | Locality              | Activity (Bq/kg wet weight) |
|------|----------------|-----------------------|-----------------------------|
|      |                |                       | <sup>137</sup> Cs           |
| MEA  | Т              |                       |                             |
| 1.   | Venison        | Downpatrick (09/08)   | <u>-</u>                    |
|      | Venison        | Downpatrick (09/10)   | -                           |
|      | Venison        | Brookeborough (09/08) | -                           |
|      | Venison        | Colebrook (09/09)     | 1                           |
| 3.   | Venison        | Bangor (10/99)        | <1                          |
|      | Venison        | Fermanagh (10/99)     | <1                          |
|      | Venison        | Fermanagh (10/00)     | 31                          |
|      | Venison        | Colebrook(10/01)      | <1                          |
|      | Venison        | Ballymena (01/02)     | -                           |
|      | Venison        | North Down (6/02)     | <1                          |
|      | Venison        | Craigavon (6/02)      | <1                          |
|      | Venison        | Fermanagh (6/03)      | 8                           |
|      | Venison        | Craigavon (9/05)      | -                           |
|      | Venison        | Down (9/06)           | -                           |
|      | Venison        | Craigavon (9/06)      | 69                          |
|      | Venison        | Craigavon (6/07)      | 27                          |
| 4.   | Beef           | Braystones (2004)     | 0.26                        |
|      | Mutton         | Braystones (2004)     | 3.2                         |
|      | Venison        | Calder Bridge (2004)  | 24                          |
| GENI | ERALISED DERIV | ZED LIMITS            |                             |
|      |                | Sheep                 | 3000                        |
|      |                | Cattle                | 2000                        |

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

1.

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) Results from previous Northern Ireland Radiation Monitoring Group Reports Results from Annual Report of BNFL Sellafield (2004 & 2006) 3.

4.

\_

- below the limit of detection activity seen but near the detection limit <1
- na not analysed
- nr not recorded.

#### TABLE C.3 SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|      | Category     | Locality                                                   | Activity (Bq      | /kg wet we       | ight)            |
|------|--------------|------------------------------------------------------------|-------------------|------------------|------------------|
| FIGU |              |                                                            | <sup>137</sup> Cs | <sup>60</sup> Co | <sup>131</sup> I |
| FISH |              |                                                            |                   |                  |                  |
| 1    | Salmon       | North Channel (09/08)                                      | -                 | nr               | nr               |
|      | Haddock      | Irish Sea (06/08)                                          | 5                 | nr               | nr               |
|      | Whiting      | Irish Sea (09/09)                                          | 1                 | nr               | nr               |
|      | Haddock      | Malin Head (09/10)                                         | <1                | nr               | nr               |
|      | Whiting      | Malin Head (09/10)                                         | -                 | nr               | nr               |
| 2.   | Plaice       | Sellafield coastal area (2004 - mean of 7 measurements)    | 5.0               | < 0.11           | Nr               |
|      | Cod          | Northern Ireland N Coast (2004 – mean of 3 measurements)   | 2.2               | < 0.06           | nr               |
|      | Whiting      | Northern Ireland Portavogie (2004-mean of 3 measurements)  | 1.4               | < 0.05           | nr               |
|      | Plaice       | Sellafield coastal area (2005 - mean of 5 measurements)    | 4.8               | < 0.11           | nr               |
|      | Whiting      | Northern Ireland Kilkeel (2005- mean of 4 measurements)    | 0.42              | < 0.12           | nr               |
|      | Cod          | Northern Ireland North Coast (2005-mean of 2 measurements) | 1.8               | < 0.05           | nr               |
|      | Plaice       | Sellafield coastal area (2006 - mean of 4 measurements)    | 4.5               | < 0.18           | nr               |
|      | Whiting      | Northern Ireland Kilkeel (2006)                            | 0.36              | < 0.06           | nr               |
|      | Cod          | Northern Ireland Kilkeel (2006- mean of 3 measurements)    | 2.9               | < 0.07           | nr               |
|      | Plaice       | Sellafield coastal area (2009 - mean of 4 measurements)    | 3.3               | < 0.10           | nr               |
|      | Cod          | Northern Ireland Kilkeel (2009- mean of 4 measurements)    | 1.2               | < 0.06           | nr               |
|      | Haddock      | Northern Ireland Kilkeel (2009- mean of 4 measurements)    | 0.88              | < 0.07           | nr               |
|      | Plaice       | Sellafield coastal area (2010 - mean of 4 measurements)    | 2.7               | < 0.06           | nr               |
|      | Cod          | Northern Ireland Kilkeel (2010- mean of 4 measurements)    | 2.1               | < 0.06           | nr               |
|      | Haddock      | Northern Ireland Kilkeel (2010- mean of 4 measurements)    | 0.83              | < 0.09           | nr               |
| 3.   | Whiting      | Kilkeel (01/98)                                            | 3                 | -                | -                |
|      | Ling         | Kilkeel (03/99)                                            | 8                 | <1               | -                |
|      | Whiting      | Unknown (03/01)                                            | 5                 | -                | -                |
|      | Whiting      | Unknown $(10/99)$                                          | <1                | -                | -                |
|      | Whiting      | Unknown (10/01)                                            | 1                 | -                | -                |
|      | Whiting      | Irish Sea $(01/02)$                                        | 5                 | -                | -                |
|      | Whiting      | Irish Sea (01/02)                                          | <1                | -                | -                |
|      | Haddock      | Northern Ireland (09/03)                                   | <1                | -                | -                |
|      | Cod          | Northern Ireland (06/02)                                   | 1                 | -                | -                |
|      | Haddock      | North Channel (09/03)                                      | <1                | -                | -                |
|      | Whiting      | North Channel (09/04)                                      | <1                | -                | -                |
|      | Haddock      | Irish Sea (06/05)                                          | <1                | nr               | nr               |
|      | Whiting      | North Channel (09/05)                                      | <1                | nr               | nr               |
|      | Haddock      | Irish Sea (05/06)                                          | 1                 | nr               | nr               |
|      | Whiting      | Irish Sea (09/06)                                          | 2                 | nr               | nr               |
|      | Haddock      | Irish Sea (06/07)                                          | 3                 | nr               | nr               |
|      | Cod          | North Channel (09/07)                                      | 5                 | nr               | nr               |
| 4.   | Plaice       | St Bees (2004)                                             | 4.1               | < 0.20           | nr               |
|      | Cod          | St Bees (2004)                                             | 6.0               | < 0.25           | nr               |
|      | Plaice       | Sellafield Coastal Area (2006)                             | 3.6               | nr               | nr               |
|      | Cod          | Sellafield Coastal Area (2006)                             | 6.3               | nr               | nr               |
|      | Plaice       | Sellafield Coastal Area (2008)                             | 4.9               | nr               | nr               |
|      | Cod          | Sellafield Coastal Area (2008)                             | 10                | nr               | nr               |
|      | Plaice       | Sellafield Coastal Area (2009)                             | 3.9               | 0.06             | nr               |
|      | Cod          | Sellafield Coastal Area (2009)                             | 7.1               | nr               | nr               |
| GENF | RALISED DERI | VED LIMITS                                                 | 800               | 1290*            | 500              |

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

Calculated from NRPB-GS7. They are for an adult critical group assuming a consumption rate of 50kg/year and an effective dose limit of 1mSv/year.

- 1. Results from Northern Ireland Radiation Monitoring Group (2008 - 2010)
- Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) Results from previous Northern Ireland Radiation Monitoring Group Reports 2.
- 3.
- 4. Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009)

below the limit of detection -

- <1activity seen but near the detection limit
- not analysed na

not recorded. nr

#### TABLE C.3 (Cont) SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|      | Category                                                                                                                                                                                                                                                                                                                      | Locality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Activity (Bq/l                                                                                                                     | kg wet weigl                                                                                                                                           | nt)                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>137</sup> Cs                                                                                                                  | <sup>60</sup> Co <sup>1</sup>                                                                                                                          | <sup>31</sup> I                                                                                     |
| SEAW | EED                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                        |                                                                                                     |
| 1.   | Dulse<br>Dulse<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Dulse<br>Fucus vesiculosus                                                                                                                                                                                                                                        | Ballywalter (06/08)<br>Millisle (06/09)<br>Ballintoy (06/09)<br>Warrenpoint (06/09)<br>Murlough Bay (09/10)<br>Ball's Point (09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>6<br><1<br>1<br>2<br><1                                                                                                       |                                                                                                                                                        | -<br>-<br>-<br>-                                                                                    |
| 2.   | Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus serratus<br>Seaweed<br>Fucus vesiculosus<br>Fucus serratus<br>Seaweed<br>Fucus vesiculosus<br>Fucus spp<br>Fucus vesiculosus<br>Fucus spp<br>Seaweed<br>Fucus vesiculosus<br>Fucus spp<br>Seaweed                                                                             | Sellafield (2004 – mean of 4 measurements)<br>Northern Ireland, Ardglass (2004 – mean of 2 measurements)<br>Sellafield (2005 – mean of 2 measurements)<br>Northern Ireland, Ardglass (2005 – mean of 3 measurements)<br>Northern Ireland, Ardglass (2005 – mean of 4 measurements)<br>Northern Ireland, Portrush (2005 – mean of 4 measurements)<br>Sellafield (2006 – mean of 2 measurements)<br>Northern Ireland, Ardglass (2006 – mean of 2 measurements)<br>Northern Ireland, Ardglass (2006 – mean of 2 measurements)<br>Northern Ireland, Ardglass (2006 – mean of 4 measurements)<br>Northern Ireland, Portrush (2006 – mean of 3 measurements)<br>Northern Ireland, Portrush (2009 – mean of 3 measurements)<br>Sellafield (2009 – mean of 2 measurements)<br>Northern Ireland, Ardglass (2010 – mean of 3 measurements)<br>Northern Ireland, Portrush (2010 – mean of 4 measurements)<br>Northern Ireland, Portrush (2010 – mean of 4 measurements)<br>Sellafield (2010 – mean of 2 measurements) | $\begin{array}{c} 6.9\\ 0.89\\ <0.10\\ 16\\ 0.49\\ <0.08\\ 5.8\\ 0.84\\ <0.07\\ 0.52\\ 0.15\\ 7.3\\ 0.32\\ 0.07\\ 4.4 \end{array}$ | $\begin{array}{c} 12 \\ <0.07 \\ <0.25 \\ 29 \\ <0.20 \\ <0.07 \\ 8.7 \\ <0.20 \\ <0.08 \\ <0.10 \\ <0.08 \\ 2.1 \\ <0.08 \\ <0.05 \\ 1.8 \end{array}$ | nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>nr<br>n                     |
| 3.   | Fucus vesiculosus<br>Fucus serratus<br>Fucus serratus<br>Dulse<br>Fucus serratus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Dulse<br>Dulse<br>Dulse<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus | Warrenpoint (11/99)<br>Ballycastle Bay (4/01)<br>Warrenpoint (11/00)<br>Warrenpoint (3/00)<br>Killough (03/00)<br>Ballycastle Bay (04/01)<br>Killough Harbour (01/02)<br>Warrenpoint (6/02)<br>Ballycastle (09/03)<br>Colliery Bay (09/04)<br>Ballywalter (06/05)<br>Ball's Point (09/05)<br>Warrenpoint (05/06)<br>Ballyhalbert (09/06)<br>Warrenpoint (06/07)<br>Ball's Point (10/07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br><1<br>1<br>2<br>1<br><1<br><1<br>2<br>-<br>1<br>2<br>-<br>1<br>6<br><1<br><1<br>1<br>1<br>-                                   |                                                                                                                                                        | 34<br><1<br><1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 4.   | Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus<br>Fucus vesiculosus                                                                                                                                                                                                                                              | Seascale (2004)<br>Nethertown (2006)<br>Nethertown (2008)<br>Nethertown (2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9<br>5.1<br>4.5<br>5.3                                                                                                           | 6.3<br>9.8<br>1.4<br>1.4                                                                                                                               | nr<br>nr<br>nr<br>nr                                                                                |

1.

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) 2.

3. Results from previous Northern Ireland Radiation Monitoring Group Reports

4. Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009)

below the limit of detection \_

<1 activity seen but near the detection limit

not analysed na

not recorded. nr

### TABLE C.3 (Cont)

#### SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|       | Category                | Locality                                                          | Activity (Bq/kg wet | weight)          |
|-------|-------------------------|-------------------------------------------------------------------|---------------------|------------------|
|       |                         |                                                                   | <sup>137</sup> Cs   | <sup>60</sup> Co |
| SEDIN | MENT                    |                                                                   |                     |                  |
| 1.    | Silt                    | Killough Harbour (08/08)                                          | 6                   | -                |
|       | Sediment                | Ards, Millisle (09/08)                                            | 7                   | -                |
|       | Silt                    | Belfast Lough (06/09)                                             | 20                  | -                |
|       | Silt                    | Warrenpoint (09/09)                                               | 21                  | -                |
|       | Silt                    | Carrickfergus (06/10)                                             | 4                   | -                |
|       | Silt                    | Carrickhugh (06/10)                                               | 5                   | -                |
|       | Silt                    | Lough Foyle (06/10)                                               | -                   | -                |
| 2     | Sand                    | Sellafield (2004 – mean of 4 measurements)                        | 82                  | 4                |
|       | Mud                     | Ravenglass, Carleton Marsh (2004 – mean of 4 measurements)        | 380                 | 3.4              |
|       | Sand                    | Northern Ireland, Portrush (2004 - mean of 2 measurements)        | < 0.6               | < 0.46           |
|       | Sand                    | Sellafield (2005 – mean of 4 measurements)                        | 60                  | 4.5              |
|       | Mud                     | Ravenglass, Carleton Marsh (2005 – mean of 3 measurements)        | 2000                | 27               |
|       | Sand                    | Northern Ireland, Portrush (2005 – mean of 2 measurements)        | < 0.4               | 0.70             |
|       | Sand                    | Sellafield (2006 – mean of 4 measurements)                        | 59                  | 3.4              |
|       | Mud                     | Ravenglass, Carleton Marsh (2006 – mean of 4 measurements)        | 460                 | 24               |
|       | Sand                    | Northern Ireland, Portrush (2006 – mean of 2 measurements)        | <0.6                | < 0.39           |
|       | Sand                    | Northern Ireland, Portrush (2009 – mean of 2 measurements)        | 0.78                | < 0.34           |
|       | Sand                    | Sellafield Beach (2009 – mean of 2 measurements)                  | 71                  | <1.0             |
|       | Sand                    | Northern Ireland, Portrush (2010 – mean of 2 measurements)        | <0.4                | < 0.42           |
|       | Sand                    | Sellafield site of former pipeline (2010 - mean of 2 measurements | s) 6                | <1.1             |
|       |                         |                                                                   |                     |                  |
| 3     | Silt                    | Belfast Lough(10/99)                                              | 44                  | -                |
|       | Silt                    | Millisle(10/99)                                                   | 8                   | -                |
|       | -                       | Belfast Lough (11/00)                                             | -                   | -                |
|       | -                       | Warrenpoint (3/01)                                                | -                   | -                |
|       | -                       | Warrenpoint(01/02)                                                | 86                  | -                |
|       | -                       | Coshowen(01/02)                                                   | 86                  | -                |
|       | Silt                    | Belfast Lough (09/02)                                             | 33                  | -                |
|       | Silt                    | Millisle (06/02)                                                  | 6                   | -                |
|       | -                       | Belfast Lough (06/03)                                             | 26                  | -                |
|       | -                       | Warrenpoint (09/03)                                               | 75                  | -                |
|       | -                       | Carrickhugh (06/04)                                               | 5                   | -                |
|       | -                       | Carrickfergus (09/04)                                             | 6                   | -                |
|       | Silt                    | Carrickfergus (06/05)                                             | 5                   | -                |
|       | Silt                    | Limavady (09/05)<br>Delfect Level (05/06)                         | 18                  | -                |
|       | Silt                    | Belfast Lough (05/06)                                             | 18                  | -                |
|       | Silt                    | Corrichteration (06/05)                                           | 18                  | <1               |
|       | SIII<br>Intentidal ailt | Warrannaint (00/07)                                               | 59                  | -                |
|       | Intertidal silt         | warrenpoint (09/07)                                               | 58                  | -                |
| 4.    | silt                    | Ravenglass - Raven Villa (2004)                                   | 200                 | 23               |
|       | silt                    | Whitehaven - Outer 2 South (2004)                                 | 150                 | <3.7             |
|       | silt                    | Ravenglass - Raven Villa (2006)                                   | 160                 | 12               |
|       | silt                    | Whitehaven - Outer harbour north (2003)                           | 140                 | <3.1             |
|       | silt                    | Ravenglass - Raven Villa (2008)                                   | 190                 | 5.4              |
|       | silt                    | Whitehaven - Outer harbour South (2008)                           | 140                 | <1.0             |
|       | silt                    | Ravenglass - Raven Villa (2009)                                   | 110                 | 4.8              |
|       | silt                    | Whitehaven - Outer harbour South (2009)                           | 90                  | 1.1              |
| GENE  | RALISED DERIVEI         | ) LIMITS                                                          | 5000                |                  |

#### GENERALISED DERIVED LIMITS

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D.

1.

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) 2.

3. Results from previous Northern Ireland Radiation Monitoring Group Reports

Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009) 4.

below the limit of detection

<1 activity seen but near the detection limit

not analysed na

not recorded. nr

| Category |               | Locality Activity                                                   | Activity (Bq/kg wet weight) |                  |  |
|----------|---------------|---------------------------------------------------------------------|-----------------------------|------------------|--|
|          |               |                                                                     | <sup>137</sup> Cs           | <sup>60</sup> Co |  |
| SHEI     | LFISH         |                                                                     |                             |                  |  |
| 1.       | Lobster       | Northern Channel (06/08)                                            | 3                           | -                |  |
|          | Mussels       | Longfield (09/08)                                                   | -                           | -                |  |
|          | Mussels       | Carrickfergus (06/09)                                               | <1                          | -                |  |
|          | Lobster       | St. John's Point (06/09)                                            | -                           | -                |  |
|          | Mussels       | Warrenpoint (09/09)                                                 | <1                          | -                |  |
|          | Lobster       | Portavogie (06/10)                                                  | -                           | -                |  |
|          | Mussels       | Dundrum Bay (09/10)                                                 | -                           | -                |  |
|          | Lobster       | Irish Sea $(06/10)$                                                 | <1                          | _                |  |
|          | Mussels       | Killough Harbour (06/10)                                            | -                           | -                |  |
| 2        | Mussels       | Northern Ireland, Carlingford Lough (2004 – mean of 2 measurements) | 0.78                        | < 0.13           |  |
|          | Winkles       | Northern Ireland, Ards Peninsula (2005 – mean of 4 measurements)    | < 0.34                      | < 0.16           |  |
|          | Winkles       | Sellafield coastal area (2005 – mean of 4 measurements)             | 8.1                         | 17               |  |
|          | Mussels       | Northern Ireland, Carlingford Lough (2006 - mean of 2 measurements) | 0.62                        | < 0.09           |  |
|          | Mussels       | Sellafield coastal area (2006- mean of 4 measurements)              | 3.2                         | 1.8              |  |
|          | Winkles       | Northern Ireland, Ards Peninsula (mean of 4 measurements)           | < 0.34                      | < 0.13           |  |
|          | Winkles       | Sellafield coastal area (2006- mean of 4 measurements)              | 7.3                         | 4.7              |  |
|          | Mussels       | Northern Ireland, Carlingford Lough (2009 – mean of 2 measurements) | 0.50                        | < 0.10           |  |
|          | Mussels       | Sellafield coastal area (2009 – mean of 4 measurements)             | 3.8                         | 0.66             |  |
|          | Winkles       | Northern Ireland, Minerstown 2009 (mean of 4 measurements)          | 0.31                        | < 0.14           |  |
|          | Winkles       | Sellafield coastal area (2009 – mean of 8 measurements)             | 6.8                         | 1.9              |  |
|          | Mussels       | Northern Ireland, Carlingford Lough (2010 – mean of 2 measurements) | 0.32                        | < 0.12           |  |
|          | Mussels       | Sellafield coastal area (2010 – mean of 4 measurements)             | 2.8                         | 1.1              |  |
|          | Winkles       | Northern Ireland, Minerstown 2010 (mean of 2 measurements)          | 0.36                        | <0.05            |  |
|          | winkles       | Senaneid coastal area (2010 – mean of 8 measurements)               | 5.2                         | 1.8              |  |
| 3        | Mussels       | St Johns Point (06/03)                                              | <1                          | -                |  |
|          | Mussels       | Shingle Bay (05/04)                                                 | -                           | -                |  |
|          | Lobster       | Colliery Bay (06/04)                                                | -                           | -                |  |
|          | Lobster       | Waterfoot (06/05)                                                   | <1                          | -                |  |
|          | Winkles       | Ballyhalbert (09/05)                                                | -                           | -                |  |
|          | Lobster       | Irish Sea (09/06)                                                   | 3                           | -                |  |
|          | Mussels       | Boneybefore (06/07)                                                 | -                           | -                |  |
|          | Mussels       | Warrenpoint (09/07)                                                 | 2                           | -                |  |
| 4.       | Mussels       | St Bees (2004)                                                      | 2.4                         | 8.3              |  |
|          | Winkles       | St Bees (2004)                                                      | 8.9                         | 12               |  |
|          | Mussels       | Sellafield coastal area (2006)                                      | 2.4                         | 3.2              |  |
|          | Winkles       | Sellafield coastal area (2006)                                      | 6.2                         | 6.2              |  |
|          | Mussels       | Sellafield coastal area (2008)                                      | 2.4                         | 1.6              |  |
|          | Winkles       | Sellafield coastal area (2008)                                      | 8.3                         | 2.4              |  |
|          | Winklas       | Senaneid coastal area (2009)                                        | 1.6                         | 1.2              |  |
|          | winkles       | Senaneu coastal area (2009)                                         | 4./                         | 1.8              |  |
| GENI     | ERALISED DERI | VED LIMITS                                                          | 4000                        | 20000*           |  |

## TABLE C.3 (Cont) SELECTED GAMMA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

#### GENERALISED DERIVED LIMITS

Notes:

The GDLs quoted include revised limits (January 1996). A full explanation of GDLs is given in Appendix D. \* Calculated from NRPB-GS7. They are for an adult critical group assuming a consumption rate of 50kg/year and an effective dose limit of 1mSv/year.

- Results from Northern Ireland Radiation Monitoring Group (2008 2010) 1.
- Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004-2006, 2009 & 2010) 2.
- 3. Results from previous Northern Ireland Radiation Monitoring Group Reports
- Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009) 4.
- below the limit of detection \_
- $<\!\!1$ activity seen but near the detection limit
- not analysed na
- not recorded. nr

### TABLE C.4

### SELECTED ALPHA COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|     | Locality                                                                                                                | Activity (Bq/kg dry weight) |                       |                   |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-------------------|
|     |                                                                                                                         | <sup>238</sup> Pu           | <sup>239,240</sup> Pu | <sup>241</sup> Am |
| SED | IMENT                                                                                                                   |                             |                       |                   |
| 1.  | Warrenpoint (09/08)                                                                                                     | 0.64                        | 3.72                  | 2.71              |
|     | Carrickfergus (06/09)                                                                                                   | 0.48                        | 3.20                  | 2.30              |
|     | Belfast Lough (06/09)                                                                                                   | 1.73                        | 8.33                  | 12.00             |
|     | Carrickhugh(06/10)                                                                                                      | 0.56                        | 1.70                  | 3.05              |
|     | Millisle (06/10)                                                                                                        | 0.43                        | 1.58                  | 2.51              |
| 2   | Ballymacormick (2004 – mean of 2 measurements)                                                                          | 1.8                         | 12                    | 18                |
|     | Sellafield (2004 – mean of 4 measurements)                                                                              | na                          | na                    | 170               |
|     | Ravenglass - Raven Villa (2004 - mean of 4 measurements)                                                                | na                          | na                    | 1300              |
|     | Ballymacormick (2005 – mean of 2 measurements)                                                                          | 1.5                         | 8.5                   | 13                |
|     | Sellafield (2005 – mean of 4 measurements)                                                                              | na                          | na                    | 160               |
|     | Ravenglass – Raven Villa (2005 – mean of 4 measurements)                                                                | na                          | na                    | 1600              |
|     | Carlingford Lough (2006 – mean of 2 measurements)                                                                       | 2.1                         | 14                    | 9.3               |
|     | Whitehaven Outer Harbour (2006 – mean of 4 measurements)                                                                | 8.6                         | 47                    | 300               |
|     | Ravenglass - Raven Villa (2006 – mean of 4 measurements)                                                                | na                          | na                    | 810               |
|     | Ballymacormick (2009 – mean of 2 measurements)                                                                          | na<br>1.7                   | na                    | 12                |
|     | Carlingford Lough (2009 – mean of 2 measurements)                                                                       | 1./                         | 11                    | 6.9               |
|     | Sellatield Beach (2009 – mean of 2 measurements)                                                                        | na                          | na                    | 150               |
|     | Dailyinacomick (2010)<br>Carlingford Lough (2010) mean of 2 measurements)                                               | 118                         | 112                   | 12                |
|     | Callingford Lough (2010 – mean of 2 measurements)<br>Sellafield site of former pipeline (2010 – mean of 2 measurements) | 2.2                         | 13                    | 0.0<br>130        |
|     | Scharled site of former pipeline (2010 – mean of 2 measurements)                                                        | na                          | na                    | 150               |
| 3   | Carrickfergus (06/03)                                                                                                   | 0.66                        | 3.66                  | 3.26              |
|     | Warrenpoint (09/03)                                                                                                     | 1.11                        | 7.79                  | 7.28              |
|     | Belfast Lough (06/04)                                                                                                   | 1.44                        | 10.92                 | 88.51             |
|     | Carrickfergus (05/04)                                                                                                   | 0.52                        | 2.77                  | 2.40              |
|     | Belfast Lough (06/05)                                                                                                   | 1.65                        | 8.73                  | 10.32             |
|     | Millisle (09/05)                                                                                                        | 0.18                        | 1.51                  | 1.78              |
|     | Carrickiergus (05/06)<br>Millicla (00/06)                                                                               | 0.74                        | 3.05                  | 4.89              |
|     | Boneybefore (06/07)                                                                                                     | 0.33                        | 2.03                  | 5.85              |
|     | Belfast Lough (10/07)                                                                                                   | 0.37                        | 2.95                  | 3.77              |
|     |                                                                                                                         | Total Pu                    |                       |                   |
| 4.  | Whitehaven - Outer 2, South (2004)                                                                                      | 120                         |                       | 150               |
|     | Ravenglass - Raven Villa (2004)                                                                                         | 490                         |                       | 560               |
|     | Whitehaven - Outer harbour north (2006)                                                                                 | 120                         |                       | 150               |
|     | Kavenglass - Kaven Villa (2006)                                                                                         | 310                         |                       | 340               |
|     | whitenaven - Outer harbour South (2008)                                                                                 | 03                          |                       | 90<br>550         |
|     | Kavenglass - Kaven VIIIa (2008)<br>Whitehaven Outer barbour South (2000)                                                | 550<br>110                  |                       | 550<br>130        |
|     | winichaven - Outer harbour South (2009)<br>Devendesse Deven Ville (2000)                                                | 270                         |                       | 130               |
|     | Ravengiass - Ravell VIIIa (2007)                                                                                        | 270                         |                       | 400               |
| GEN | ERALISED DERIVED LIMITS                                                                                                 | 100000                      | 90000                 | 90000             |

Notes:

The GDLs quoted include revised limits (1998). A full explanation of GDLs is given in Appendix D. Results for transuranic element determinations are reported on a wet basis except for sediment.

1. Results from Northern Ireland Radiation Monitoring Group (2008 - 2010)

2. Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010)

3. Results from previous Northern Ireland Radiation Monitoring Group Reports

4. Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009)

- below the limit of detection

<1 activity seen but near the detection limit

na not analysed

### **TABLE C.5** SELECTED <sup>99</sup>Tc COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|      | Category          | Locality                                         | Activity (Bq/kg wet weight) |
|------|-------------------|--------------------------------------------------|-----------------------------|
|      |                   |                                                  | <sup>99</sup> Tc            |
| SEAV | VEED              |                                                  |                             |
| 1.   | Dulse             | Ballywalter (06/08)                              | 14                          |
|      | Seaweed           | Ballyhalbert (09/08)                             | 80                          |
|      | Seaweed           | Ballintoy (09/08)                                | 115                         |
|      | Dulse             | Millisle (06/09)                                 | -                           |
|      | Fucus vesiculosus | Ballintoy(06/09)                                 | 7                           |
|      | Fucus vesiculosus | Warrenpoint (06/09)                              | 385                         |
|      | Fucus vesiculosus | Ball's Point (06/10)                             | 11                          |
| 2    | Fucus vesiculosus | Sellafield (2004 – mean of 4 measurements)       | 7100                        |
|      | Fucus vesiculosus | Ardglass (2001 – mean of 3 measurements)         | 530                         |
|      | Rhodymenia spp.   | Strangford Lough (2004 – mean of 3 measurements) | 28                          |
|      | Seaweed           | Sellafield (2005 – mean of 2 measurements)       | 6900                        |
|      | Fucus vesiculosus | Ardglass (2002 – mean of 3 measurements)         | 310                         |
|      | Rhodymenia spp.   | Strangford Lough (2005 – mean of 3 measurements) | 24                          |
|      | Seaweed           | Sellafield (2006 – mean of 2 measurements)       | 3900                        |
|      | Fucus vesiculosus | Ardglass (2006 – mean of 2 measurements)         | 1100                        |
|      | Rhodymenia spp.   | Strangford Lough (2006 – mean of 3 measurements) | 16                          |
|      | Fucus vesiculosus | Ardglass (2009 – mean of 3 measurements)         | 220                         |
|      | Rhodymenia spp.   | Strangford Lough (2009 – mean of 4 measurements) | 4.9                         |
|      | Seaweed           | Sellafield (2009 – mean of 2 measurements)       | 940                         |
|      | Fucus vesiculosus | Ardglass (2010 – mean of 3 measurements)         | 80                          |
|      | Rhodymenia spp.   | Strangford Lough (2010 – mean of 4 measurements) | 5.3                         |
|      | Seaweed           | Sellafield (2010 – mean of 2 measurements)       | 1300                        |
| 3    | Fucus vesiculosus | Warrenpoint (11/99)                              | 990                         |
|      | Fucus vesiculosus | Carrickhugh Bridge (3/00)                        | 423                         |
|      | Fucus spiralis    | Ards (10/99)                                     | 450                         |
|      | Fucus vesiculosus | Warrenpoint (3/01)                               | 4774                        |
|      | Fucus vesiculosus | Ards (4/01)                                      | 1528                        |
|      | Fucus vesiculosus | Ballyhalbert (01/02)                             | 3685                        |
|      | A.nodosum         | Warrenpoint (01/02)                              | 3635                        |
|      | Fucus vesículosus | Warrenpoint (06/02)                              | 1011                        |
|      | Fucus vesículosus | Carrickhugh Bridge (06/02)                       | 220                         |
|      | Duise             | Ballycastie (06/03)                              | 20                          |
|      | Duise             | Ballywater $(06/05)$                             | 4                           |
|      | Fucus vesiculosus | Ball s Point $(09/05)$                           | 30                          |
|      | Duise             | Ballywater $(05/06)$<br>Ball'a Doint $(00/06)$   | 22                          |
|      | Fucus vesiculosus | Warrenpoint (06/07)                              | 19                          |
|      | Fucus serialus    | $\mathbf{B}_{\text{all's Point}}(00/07)$         | 40                          |
|      | Fucus vesiculosus |                                                  | 52                          |
| 4.   | Fucus vesiculosus | Seascale (2004)                                  | 25000                       |
|      | Fucus vesiculosus | Netherterm (2004)                                | 9800                        |
|      | Fucus vesiculosus | Nethertown (2006)                                | 2500                        |
|      | Fucus vesiculosus | Nethertown (2000)                                | 1300                        |
|      | Fucus vesículosus | Inemeriown (2009)                                | 1300                        |

Notes

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) 1.

2. Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004-2006, 2009 & 2010)

3.

Results from previous Northern Ireland Radiation Monitoring Group Reports Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009) 4.

-

below the limit of detection activity seen but near the detection limit <1

not analysed na

# TABLE C.5 (Cont) SELECTED <sup>99</sup>Tc COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|     | Category  | Locality                                                | Activity (Bq/kg wet weight) |
|-----|-----------|---------------------------------------------------------|-----------------------------|
|     |           |                                                         | <sup>99</sup> Tc            |
| SHE | LLFISH    |                                                         |                             |
| 1.  | Lobster   | Irish Sea (09/08)                                       | 159                         |
|     | Mussels   | Longfield (09/08)                                       | 3                           |
|     | Lobster   | North Channel (06/09)                                   | 10                          |
|     | Mussels   | Carrickfergus (06/10)                                   | 56                          |
|     | Mussels   | Killough Harbour (06/10)                                | 8                           |
|     | Lobster   | Portavogie (06/10)                                      | 53                          |
|     | Mussels   | Warrenpoint (06/10)                                     | 28                          |
| 2.  | Lobster   | Sellafield coastal area (2004 - mean of 8 measurements  | ) 100                       |
|     | Lobster   | Kilkeel (2004 - mean of 4 measurements)                 | 160                         |
|     | Mussels   | Carlingford Lough (2004 - mean of 2 measurements)       | 20                          |
|     | Lobster   | Sellafield coastal area (2005 - mean of 8 measurements  | ) 1800                      |
|     | Mussels   | Carlingford Lough (2005 - mean of 2 measurements)       | 18                          |
|     | Lobster   | Kilkeel (2005, mean of 4 measurements)                  | 150                         |
|     | Lobster   | Sellafield coastal area (2006 - mean of 8 measurements  | ) 1000                      |
|     | Mussels   | Carlingford Lough (2006 - mean of 2 measurements)       | 20                          |
|     | Lobster   | Kilkeel (2006, mean of 2 measurements)                  | 100                         |
|     | Mussels   | Carlingford Lough (2009 - mean of 2 measurements)       | 6.2                         |
|     | Lobster   | Kilkeel (2009, mean of 4 measurements)                  | 14                          |
|     | Lobster   | Sellafield coastal area (2009 - mean of 8 measurements) | 250                         |
|     | Mussels   | Carlingford Lough (2010 - mean of 2 measurements)       | 13                          |
|     | Lobster   | Kilkeel (2010) mean of 4 measurements)                  | 25                          |
|     | Lobster   | Sellafield coastal area (2010 - mean of 8 measurements) | ) 240                       |
| 3   | Lobster   | Down (10/99)                                            | 57                          |
| 2.  | Nephrops  | (11/99)                                                 | 96                          |
|     | Crah      | Fairhead (3/00)                                         | 60                          |
|     | Lobster   | Down $(10/00)$                                          | 442                         |
|     | Lobster   | Newry & Mourne (10/00)                                  | 253                         |
|     | Lobster   | Ballyhornan (10/01)                                     | 520                         |
|     | Nephrons  | Unknown (09/01)                                         | 103                         |
|     | Lobster   | Down (05/02)                                            | 201                         |
|     | Lobster   | Newry & Mourne $(09/02)$                                | 374                         |
|     | Mussels   | Larne $(06/03)$                                         | 65                          |
|     | Mussels   | Derry $(09/04)$                                         | 103                         |
|     | Lobster   | Newry & Mourne $(09/04)$                                | 162                         |
|     | Lobster   | St John's Point (06/05)                                 | 3                           |
|     | Mussels   | Derry $(09/05)$                                         | 5                           |
|     | Lobster   | North Channel (05/06)                                   | 69                          |
|     | Mussels   | Longfield (09/06)                                       | 6                           |
|     | Mussels   | Carrickfergus (06/07)                                   | 65                          |
|     | Lobster   | Irish Sea (09/07)                                       | 85                          |
| 4   | Lobsters  | St Bees (2004)                                          | 2700                        |
| ••  | Mussels   | St Bees (2004)                                          | 1900                        |
|     | Lobsters  | Sellafield coastal area (2006)                          | 560                         |
|     | Mussele   | Sellafield coastal area (2006)                          | 200                         |
|     | Lobsters  | Sellafield coastal area (2008)                          | 420                         |
|     | Mussele   | Sellafield coastal area (2008)                          | 150                         |
|     | Lobsters  | Sellafield coastal area (2009)                          | 220                         |
|     | Mussels   | Sellafield coastal area (2009)                          | 120                         |
|     | 1.1405015 | Semanena coustan area (2005)                            | 120                         |

Notes

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) 1.

Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) Results from previous Northern Ireland Radiation Monitoring Group Reports Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009) 2.

3.

4.

below the limit of detection -

<1 activity seen but near the detection limit

na not analysed

#### **TABLE C.6** SELECTED <sup>14</sup>C COMPARATIVE DATA FOR THE MARINE ENVIRONMENT

|      | Category                                                                                               | Locality                                                                                                                                                                                                                                                                                                                                                                                                                                             | Activity (Bq/kg wet weight) <sup>14</sup> C                                                       |
|------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| SEAF | ISH                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |
| 1.   | Salmon<br>Haddock<br>Haddock                                                                           | North Channel(09/08)<br>Malin Head(06/098)<br>Irish Sea (06/10)                                                                                                                                                                                                                                                                                                                                                                                      | 24<br>20<br>31                                                                                    |
|      | Whiting                                                                                                | North Channel(09/10)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                |
| 2    | Plaice<br>Cod<br>Plaice<br>Cod<br>Plaice<br>Cod<br>Plaice<br>Cod<br>Plaice<br>Cod                      | Sellafield offshore (2004)<br>Kilkeel (2004 – mean of 4 measurements)<br>Sellafield offshore (2005 – mean of 2 measurements)<br>Kilkeel (2005 – mean of 4 measurements)<br>Sellafield offshore (2006)<br>Kilkeel (2006 – mean of 3 measurements)<br>Sellafield offshore (2009 – mean of 2 measurements)<br>Kilkeel (2009 – mean of 4 measurements)<br>Sellafield offshore (2010 – mean of 2 measurements)<br>Kilkeel (2010 – mean of 4 measurements) | $ \begin{array}{r} 140 \\ 50 \\ 300 \\ 26 \\ 200 \\ 55 \\ 140 \\ 40 \\ 150 \\ 49 \\ \end{array} $ |
| 3    | Whiting<br>Haddock<br>Cod<br>Haddock<br>Haddock<br>Dogfish<br>Haddock<br>Haddock<br>Haddock<br>Haddock | Northern Ireland (2003)<br>Down (2003)<br>North Channel (2003)<br>Craigavon (2004)<br>Derry (2004)<br>Irish Sea (06/05)<br>North Channel (09/05)<br>Irish Sea (05/06)<br>Irish sea (06/06)<br>North Channel (09/07)                                                                                                                                                                                                                                  | na<br>28<br>47<br>23<br>13<br>42<br>23<br>32<br>70<br>49                                          |
| 4.   | Plaice<br>Cod<br>Plaice<br>Cod<br>Plaice<br>Cod<br>Plaice                                              | St Bees (2004)<br>St Bees (2004)<br>Sellafield coastal area (2006)<br>Sellafield coastal area (2006)<br>Sellafield coastal area (2008)<br>Sellafield coastal area (2008)<br>Sellafield coastal area (2009)<br>Sellafield coastal area (2009)                                                                                                                                                                                                         | 200<br>140<br>150<br>130<br>91<br>160<br>110<br>170                                               |

Notes

1.

Results from Northern Ireland Radiation Monitoring Group (2008 - 2010) Results from 'Radioactivity in Food & the Environment, Food Standards Agency (2004- 2006, 2009 & 2010) Results from previous Northern Ireland Radiation Monitoring Group Reports 2.

3.

4. Results from Annual Report of BNFL Sellafield and Sellafield Ltd (2004, 2006, 2008, & 2009)

below the limit of detection -

activity seen but near the detection limit  $<\!\!1$ 

na not analysed

# THE NUCLEAR ENVIRONMENT, INCIDENTS AND EVENTS

Radioactivity in Northern Ireland is derived mainly from weapons testing, Chernobyl and BNFL Sellafield. This Appendix contains information on the activities at Sellafield and brief summaries of recent nuclear incidents and events.

#### BNFL SELLAFIELD

Sellafield Ltd (formerly British Nuclear Fuels plc, BNFL) is concerned mainly with the design and production of fuel for nuclear reactors and its reprocessing after irradiation. The company also operates a solid waste disposal site and nuclear power plant that supplies electricity to the national grid. Regular monitoring is carried out of the environmental consequences of discharges of radioactive waste from four nuclear sites in England, namely Sellafield, Drigg, Springfields and Capenhurst. These nuclear sites are responsible for significant discharges of radioactive material and are the prime focus of CEFAS (Centre for Environment, Fisheries and Aquaculture Science, formerly MAFF) & EA monitoring. Most sampling and direct monitoring is conducted in the site's immediate vicinity. However, because of the ability to detect the effects of the discharges of liquid effluent from BNFL Sellafield in many parts of north-European waters, the MAFF programme for this site extend beyond national boundaries.

Operations and facilities at Sellafield include fuel element storage and decommissioning, the Magnox and oxide fuel reprocessing plants and the Calder Hall Magnox nuclear power station. Radioactive waste discharges include a very minor contribution from the adjoining UKAEA Windscale facilities. The most significant discharges are made from the BNFL fuel element storage ponds and the reprocessing plants, through which pass irradiated Magnox and oxide fuel from the UK nuclear power programme, and some fuel from abroad.<sup>1</sup>

Authorisation for discharge is given by the Environment Agency. At the end of 1999 the discharge limit for Tc-99 was reduced from 200TBq/y to 90TBq/y. A review of all discharges from Sellafield commenced in April 2000 after initial public consultation. In November 2000, the Agency started consultation on proposals for future discharge of Tc-99 to the sea and in 2006 the limit was further reduced to 10 TBq/y.

Discharges of Tc-99 decreased significantly during 2003 due to trials with tetraphenylphosphonium bromide (TPPBr). This reacts with the Tc-99 to form a salt which is subsequently retained and encapsulated. This treatment will continue with all medium active concentrate  $(MAC)^2$ .

#### Notes:

- <sup>1</sup> Taken from 'Radioactivity in Food & the Environment 1995', Food Standards Agency.
- <sup>2</sup> Taken from BNFL Annual Report 2003.



FIGURE D.1: SELLAFIELD DISCHARGES TO THE IRISH SEA, 1954 – 2009 (BNFL 2009)

# **TABLE D.1** SELLAFIELD DISCHARGES TO THE IRISH SEA, 1998 - 2009 (BNFL 2009)

| Nuclide                  | Annual discharge (Terabecquerel) ** |       |       |       |       |       | Authorised Limit<br>(TBq) <sup>a</sup> |       |       |       |       |       |        |
|--------------------------|-------------------------------------|-------|-------|-------|-------|-------|----------------------------------------|-------|-------|-------|-------|-------|--------|
|                          | 1998                                | 1999  | 2000  | 2001  | 2002  | 2003  | 2004                                   | 2005  | 2006  | 2007  | 2008  | 2009  |        |
| Tritium                  | 2300                                | 2500  | 2300  | 2600  | 3300  | 3900  | 3200                                   | 1600  | 1100  | 600   | 780   | 1500  | 20,000 |
| Americium-241            | 0.05                                | 0.03  | 0.03  | 0.04  | 0.04  | 0.06  | 0.04                                   | 0.03  | 0.05  | 0.02  | 0.03  | 0.05  | 0.3    |
| Antimony-125             | 0.05                                | 7.9   | 7.8   | 13    | 17    | 23    | 29                                     | 12    | 8.0   | 5.1   | 3.1   | 3.8   | -      |
| Caesium-134              | 0.32                                | 0.34  | 0.23  | 0.48  | 0.49  | 0.39  | 0.40                                   | 0.16  | 0.15  | 0.14  | 0.12  | 0.14  | 1.6    |
| Caesium-137              | 7.5                                 | 9.1   | 6.9   | 9.6   | 7.7   | 6.2   | 9.7                                    | 6.0   | 6.0   | 7.0   | 5.1   | 4.3   | 34     |
| Carbon-14                | 3.7                                 | 5.8   | 4.6   | 9.5   | 13.0  | 17    | 16                                     | 5.0   | 11    | 4.7   | 7.2   | 8.2   | 21     |
| Cerium-144               | 0.76                                | 0.60  | 0.55  | 0.79  | 0.97  | 0.88  | 0.82                                   | 0.54  | 0.60  | 0.40  | 0.40  | 0.50  | 4      |
| Cobalt-60                | 2.4                                 | 0.89  | 1.2   | 1.2   | 0.89  | 0.43  | 0.78                                   | 0.70  | 0.14  | 0.05  | 0.07  | 0.08  | 3.6    |
| Curium-242               | 0.006                               | 0.003 | 0.003 | 0.006 | 0.003 | 0.003 | 0.006                                  | 0.004 | 0.002 | 0.001 | 0.001 | с     | -      |
| Curium-243+244           | 0.003                               | 0.002 | 0.003 | 0.006 | 0.02  | 0.01  | 0.01                                   | 0.004 | 0.002 | 0.003 | 0.003 | 0.005 | 0.05   |
| Europium-152             | 0.16                                | 0.11  | 0.07  | 0.11  | 0.13  | 0.23  | 0.22                                   | 0.17  | 0.11  | 0.13  | 0.11  | 0.07  | -      |
| Europium-154             | 0.10                                | 0.05  | 0.06  | 0.08  | 0.13  | 0.22  | 0.17                                   | 0.11  | 0.08  | 0.09  | 0.10  | 0.06  | -      |
| Europium-155             | 0.09                                | 0.04  | 0.05  | 0.07  | 0.10  | 0.19  | 0.14                                   | 0.12  | 0.06  | 0.07  | 0.10  | 0.09  | -      |
| Iodine-129               | 0.55                                | 0.48  | 0.47  | 0.63  | 0.73  | 0.55  | 0.65                                   | 0.30  | 0.20  | 0.10  | 0.20  | 0.25  | 2      |
| Iron-55                  | 0.01                                | 0.02  | 0.04  | 0.02  | 0.03  | 0.02  | 0.04                                   | 0.02  | 0.03  | 0.02  | 0.03  | с     | -      |
| Manganese-54             | 0.07                                | 0.04  | 0.01  | 0.03  | 0.02  | 0.02  | 0.01                                   | 0.01  | 0.007 | 0.007 | 0.009 | с     | -      |
| Neptunium-237            | 0.04                                | 0.04  | 0.03  | 0.04  | 0.06  | 0.05  | 0.06                                   | 0.05  | 0.05  | 0.04  | 0.04  | 0.05  | 1      |
| Nickel-63                | 0.4                                 | 0.58  | 0.43  | 0.27  | 0.46  | 0.39  | 0.34                                   | 0.90  | 1.9   | 0.41  | 0.80  | с     | -      |
| Niobium-95               | 0.35                                | 0.08  | 0.09  | 0.35  | 0.08  | 0.09  | 0.10                                   | 0.07  | 0.07  | 0.05  | 0.05  | 0.08  | 3.8*   |
| Plutonium alpha          | 0.14                                | 0.11  | 0.11  | 0.16  | 0.34  | 0.36  | 0.29                                   | 0.20  | 0.15  | 0.11  | 0.11  | 0.12  | 0.7    |
| Plutonium-241            | 3.5                                 | 2.9   | 3.2   | 4.6   | 10    | 10    | 8.1                                    | 5.0   | 3.6   | 2.8   | 2.4   | 2.9   | 25     |
| Promethium-147           | 0.39                                | 0.41  | 0.35  | 0.42  | 0.79  | 0.67  | 0.35                                   | 0.30  | 0.17  | 0.06  | d     | с     | -      |
| Ruthenium-103            | 0.15                                | 0.13  | 0.11  | 0.15  | 0.18  | 0.18  | 0.19                                   | 0.12  | 0.13  | 0.11  | 0.09  | с     | -      |
| Ruthenium-106            | 5.6                                 | 2.7   | 2.7   | 3.9   | 6.0   | 12    | 4.4                                    | 1.8   | 3.5   | 1.5   | 1.4   | 3.2   | 63     |
| Silver-110m              | 0.12                                | 0.09  | 0.08  | 0.12  | 0.09  | 0.08  | 0.12                                   | 0.07  | 0.07  | 0.07  | 0.08  | с     | -      |
| Strontium-89             | 0.88                                | 0.60  | 0.64  | 0.76  | 0.52  | 0.56  | 1.7                                    | 1.1   | 0.50  | 0.45  | 0.23  | с     | -      |
| Strontium-90             | 18                                  | 31    | 20    | 26    | 20    | 14    | 18                                     | 13    | 5.0   | 5.0   | 1.7   | 2.9   | 48     |
| Sulphur-35               | 0.43                                | 0.32  | 0.36  | 0.43  | 0.32  | 0.36  | 0.12                                   | 0.08  | 0.06  | 0.05  | 0.05  | с     | -      |
| Technetium-99            | 53                                  | 69    | 44    | 79    | 85    | 37    | 14                                     | 7.0   | 6.0   | 4.9   | 2.4   | 3.1   | 10     |
| Zinc-65                  | 0.14                                | 0.07  | 0.03  | 0.05  | 0.03  | 0.03  | 0.03                                   | 0.02  | 0.02  | 0.02  | 0.02  | 0.02  | -      |
| Zirconium-95             | 0.30                                | 0.10  | 0.10  | 0.13  | 0.17  | 0.14  | 0.13                                   | 0.09  | 0.09  | 0.07  | 0.07  | 0.11  | 3.8*   |
| Total alpha <sup>b</sup> | 0.17                                | 0.13  | 0.12  | 0.20  | 0.35  | 0.4   | 0.29                                   | 0.25  | 0.21  | 0.12  | 0.13  | 0.15  | 1      |
| Total beta b             | 0.86                                | 110   | 77    | 120   | 110   | 83    | 73                                     | 43    | 29    | 25    | 14    | 18    | 220    |
| Uranium (kg)             | 550                                 | 540   | 610   | 390   | 440   | 480   | 440                                    | 370   | 440   | 300   | 280   | 410   | 2,000  |

Notes:

\*\*

\*

a

million million becquerel, 10<sup>12</sup>Bq, Niobium-95 and Zirconium-95 have a combined authorised limit of 3.8TBq Limits as quoted in BNFL report 2009. Different limits applied in previous years. Total alpha and total beta are overall control measures that do not reproduce precisely the contributions of individual nuclides. b

Not measured in 2009. с

Not measured in 2008. d



### TRANSPORT OF DISSOLVED RADIOACTIVITY IN WESTERN EUROPEAN AND ARCTIC WATERS

#### FIGURE D.2

Major surface currents and transit times in years from Sellafield to different areas. (Extract from Marine Pollution Bulletin Vol 32, 1995 – H. Dahlgaard, Q. Chan, J. Herrman, H. Nies, R.D. Ibbett, P. J. Kershaw (1995) on the background level of 99Tc, <sup>90</sup>Sr and <sup>137</sup>Cs in the North Atlantic, J Mar. Sys 6, 571-578)

# Contours of <sup>99</sup>Tc (mBq/litre) in the Irish Sea



Pre-EARP 1992

Post-EARP 1994



# FIGURE D.3

Adapted from K.S. Leonard, D. McCubbin, J. Brown, R. Bonfield, T. Brooks, 1997. A summary report of the distribution of <sup>99</sup>Tc in UK Coastal Waters. Radioprotection – Colloques, 32, C2-109-114.

Note: EARP is the Enhanced Actinide Recovery Plant at Sellafield

# **RADIATION MONITORING IN THE UNITED KINGDOM**

In the United Kingdom all sites where ionising radiation is used (e.g. hospitals, universities, nuclear establishments) have a statutory responsibility to monitor their environment and keep records of any disposals. The means of monitoring are diverse and often complex radiological protection instrumentation capable of measuring specific isotopes or kinds of radiation are deployed. For example, specific measuring systems dedicated to the monitoring of Plutonium isotopes and <sup>131</sup>Iodine exist around and within nuclear sites.

Public concern following the Chernobyl incident stimulated many local authorities to engage in some kind of local radiological assessment. In some cases the authorities conduct monitoring themselves although generally an independent third party is used (university, hospital, commercial laboratories). Over two hundred local authorities became involved in some kind of independent radiation monitoring. This has now largely ceased because of financial constraints.

The responsibility for authorising and monitoring discharges of radioactive material into the environment rests with the Environment Agency (EA) and the Scottish Environment Protection Agency (SEPA), NIEA – IPRI. Individual sites monitor their local environment e.g. UKAEA Winfrith reports. In recent times, following Chernobyl, a more wide ranging assessment of other areas has also been undertaken (e.g. Radioactivity in Food and the Environment). The levels permitted are determined from a detailed consideration of the likely pathways of the radionuclides, their physical lifetime and the possible radiation doses that might affect the *critical group*. This is the group of people who are likely to receive the highest radiation exposure as a result of the discharges. The *critical group* is usually identified after a careful survey of the eating habits of the local population has been undertaken. The nuclear establishment and the government department that issue the authorisations are strongly of the opinion that radiation doses to the public are well below internationally agreed limits in all UK sites. Indeed, the Health Protection Agency (formerly National Radiological Protection Board, NRPB), on the basis of comprehensive monitoring around the Sellafield site have evaluated that exposure to the general public from effluent discharges is within their guidance level of 0.5 milli-Sieverts/year.

**The following article was originally published in the Journal EHP :** Higgins A. and C<u>roudace I.W. (2006)</u> Lessons forgotten - radiological monitoring in the U.K. 20 years after Chernobyl. <u>Environmental Health Practioner.</u>, 114, 12-13.

# The current status and future of local authority funded radiological monitoring 20 years after Chernobyl

Alan Higgins (President CIEH) and Dr Ian Croudace (SERMG Project Manager)

In the aftermath of the Chernobyl accident many UK local authorities developed a capability for radiological monitoring to provide rapidly available local information to their electorate. However, 20 years after the event many of the schemes are beginning to cease operation due to financial pressures on local authorities and the loss of champions. The potential impact of this demise is discussed by Alan Higgins, President of the Chartered Institute of Environmental Health who played a significant role in setting up LARRMACC, the Local Authority Radiation and Radioactivity Monitoring and Collation Centre (later renamed LARNet), along with Dr Ian Croudace of Southampton University, established one of the largest UK Local authority radiation monitoring schemes in England.

Over twenty years have passed since the No 4 Chernobyl Reactor suffered an explosion which led to one of the world's worst civil catastrophes (26<sup>th</sup> April 1986). Contamination from various volatile radionuclides (such as <sup>137</sup>Cs) was dispersed across Europe in a pattern largely controlled by prevailing weather systems. Much of the UK was affected but upland areas where rainfall was heaviest suffered the worst contamination. The catastrophe spawned the development of a small radioactivity monitoring industry in the UK.

In 1986 UK national agencies were unprepared for a Chernobyl-type accident. Government organisations were prompted into action and had to respond as best they could but progress was slow. The general inadequacy of existing systems led many Local Authorities to form their own independent consortia where economies of scale could operate.

The suppliers of high technology radiation detectors experienced a mini-boom and small research laboratories expanded to provide a range of monitoring expertise and analytical services. The impact of the accident served to turn many in the West against nuclear energy since they feared, arguably unjustly, that the design inadequacies of the Russian reactors were a feature of all nuclear reactors.



THE TRANSPORT PATHWAY FOR THE CHERNOBYL RADIOACTIVE CLOUD IN EUROPE OVER TIME

Many Local Authorities, mostly through their Environmental Health Departments, sought advice and information from independent and credible sources of expertise such as universities, hospitals and Public Analyst laboratories. These organisations were also unprepared but several rose to the challenge to develop a radiometric capability and provide information to the LA-managed public protection professionals. Several regional schemes formed that were able to supply key information relatively quickly and certainly as quickly as the various Government agencies, but with the added perception of independence. Some of the larger schemes that are still in existence include SERMG (Southern England), NIRMG (Northern Ireland), RADMIL (Lancashire), and WSERMS (western Scotland) and these produce quarterly and annual reports to inform the public of the local impact of Chernobyl and other sources of radioactive contamination. Local Authorities as a whole combined through the Local Authority Associations to form LARRMACC, whose primary role was to deliver consistency across the range of local authority individual and consortia radiological monitoring. They also linked into the Government's new monitoring network for international radiological incidents, RIMNET. In fact Local Authorities provided the main source of long term monitoring of radiological background across a range of environmental materials and foodstuffs.

Moving forward 20 years how has the landscape changed? The impact from Chernobyl has largely drifted from the public interest but occasional interest in radioactivity is sparked with threats of dirty bombs. The many reactors in Western and Eastern Europe still exist and are now twenty years older. National systems for monitoring emergencies have improved significantly and the UK is better prepared for major incidents with the formation of new and reorganised agencies, such as the National Response Agency (for nuclear accidents), the Food Standards Agency, the Health Protection Agency and the Environment Agency. The new raft of Government designed measures (as outlined in www.ukresilience.info) would also provide information.

However, what has happened to the LA-centred radiation expertise? Several of the schemes funded by LAs have died away because of funding problems and the loss of individuals who were involved in the initial set up of the schemes. Some of the larger schemes have continued to exist but their membership has dwindled. Even though the costs of schemes are relatively trivial to individual Local Authorities, the pressure to cut costs led to many non-essential services suffering, such as radiation monitoring. Unless their initial champions were prepared to fight for the LA schemes they frequently lost funding. In fact the original champions have commonly retired or moved on. Even LARNet, the

successor to LARRMACC which was formed primarily to ensure appropriate and consistent quality measures were used by laboratories serving the numerous Las, will soon to cease to exist.

So if another major radiometric incident occurred (e.g. a reactor accident or a dirty bomb) where would local authorities be? The new national support systems would hopefully work well in the early stages of identifying and responding to the emergency. However, their focus is primarily on dealing with the immediate after-effects of an incident and there is a significant focus on likely terrorist incidents. It is not clear that they are capable of supplying the long-term support and information for which the public would be looking, given that they are mainly designed to respond to the immediate emergency and not the long term monitoring requirement. Additionally, the public would still expect to know the situation for their immediate local areas and depending upon the nature of the incident and the spread of contamination this may not be available except in a regional or national context. Local Authority Public Protection and Emergency Planning Officers would be in the best position to provide such local information but only if radiation monitoring capabilities are maintained or if they can be bought in from existing sources. The schemes established in the late 1980s took up to a year to become effective in the immediate aftermath of Chernobyl and there were few resources available to be bought in.

Local Authorities should consider whether they go for crisis management or pay a relatively modest insurance premium to maintain a LA-centred independent capability. Such a capability can be cost-effective if local authorities (including Emergency Planning Offices) continue to organise themselves into and support the existing consortia. Without this support many of these consortia are likely to cease to exist in the near future and local authorities will be back to square one in respect of radiation monitoring capability.

#### Fukushima Accident

Almost 25 years after the Chernobyl accident another serious nuclear accident occurred in Japan. The accident was initiated by a combination of extreme natural events (i.e. an earthquake and a tsunami). The impact on the UK was virtually insignificant but the incident did cause concern about nuclear safety. It is notable that the reactor systems damaged were of an early vintage and this has been used as an argument by the nuclear industry to deny the likelihood of a similar accident occurring with modern systems. The unusual location of the Fukushima reactors (i.e. on an active seismic zone) is also seen as a highly undesirable feature. Such a combination of risks is seen as highly unlikely to affect UK nuclear plants.

- Following a major earthquake, a 15-metre tsunami disabled the power supply and cooling of three Fukushima Daiichi reactors, causing a nuclear accident on 11 March. All three cores largely melted in the first three days.
- The accident was rated 7 on the INES scale, due to the high radioactive releases in the first few days. All four reactors are written off.
- There have been no deaths or cases of radiation sickness from the nuclear accident.

http://www.world-nuclear.org/info/fukushima accident inf129.html

#### DOSE LIMITS: ORIGINS AND USES

Radiation dose limits are those that should not be exceeded in order that a normal member of society is not exposed to an unacceptable risk. These dose limits are determined from a wide range of criteria such as epidemiological studies (especially from Japanese bomb survivors) and are set in the first instance by the ICRP (International Commission for Radiological Protection). In radiological practice the dose limit is considered to be a precautionary limit and not a danger limit. That is, if the limit is exceeded a situation should not arise that was irremediable. Thus, the risk associated with an increase in dose by several times the dose limit may only cause a very slight increase in the real risk of, for example, death from cancer. Another radiological principle recommended by the ICRP and accepted by the UK establishment is that doses should be as low as reasonably achievable, the ALARA principle. This means that it is not sufficient to merely ensure that dose limits are complied with but that all efforts should be made to minimise them to the lowest practicable levels.

The annual dose limit for radiation exposure is 1 mSv for man-made sources. For authorised discharges there is a single source constraint of 0.3mSv/y and a site constraint of 0.5 mSv/year regardless of the number of owners or operators at that site. These guidelines apply to existing plants and where compliance is not possible, then the ALARA principle should hold and the operation should be within dose limits. (CM 2919, 1995)

The inference to be drawn from this proposal is that there are no sites in the UK that constitute any appreciable radiological hazard to members of the public. To place these dose limits into perspective the average annual dose, from all sources is 2.6 mSv (i.e. natural and made-made sources).

### DERIVED LIMITS AND ANNUAL LIMITS OF INTAKE, ALI

The primary dose limit for members of the public is set at 1 mSv per year for artificial sources of radiation. This does not include medical exposure but does include any possible incorporation, via ingestion or inhalation, of radioactive substances. In the latter case where incorporation may take place over some time it is difficult to make any direct measurement of the dose received. In order to comply with the limits, therefore, the ICRP has calculated the CED (committed effective dose) which enables the dose taken into the body to be estimated. In order to do this the Commission has calculated dose factors for the whole body and for each organ or tissue, which expresses the total dose received per unit of activity intake. These factors can then be used to calculate the total activity of a particular radionuclide taken into the body. These calculations take into consideration the physical, chemical and metabolic properties (assimilation, organ concerned, retention period in the organ etc) of the nuclide in question.

#### i THE USE OF ANNUAL LIMITS OF INTAKE, ALIS

Annual limits of intake of radioactive substances (an ICRP concept) should be used with caution. For example, with the isotope <sup>137</sup>Caesium, it is possible to calculate the mass concentration that should be tolerated in foods liable to be consumed on a daily basis by the population. The figure calculated represents the acceptable concentration for the consumption of the contaminated food, day after day, year after year throughout the lifetime of the individual *critical group* member in order to comply with the ICRP dose limit. However, consumption is rarely continuous and therefore measured concentrations may be much in excess of the calculated figure. Thus, although a particular isotope may be found having an elevated level in a particular foodstuff, its long-term radiological significance may be less serious than is evident at first seen if measures are taken to counteract the observed levels. As with all radiological data, caution should be exercised in their interpretation and an understanding of their limitations should be borne in mind.

#### ii GENERALISED DERIVED LIMITS AND DERIVED LIMITS

Generalised derived limits (GDLs) and derived limited (DLs) are values expressed as an activity per unit weight or unit volume. The GDL is a generally applicable value based on detailed habit surveys. DLs may have a more restricted significance but are based on similar considerations. They are secondary standards set and used to ensure virtual certainty that a critical group will not be exposed to a radiation dose in excess of the recommended limit, at present 1mSv per annum. They are calculated generally only for those environmental materials which are considered important to a particular critical group. GDLs and DLs are calculated using data published by the ICRP, presented as the committed effective dose (CED). From these data the Annual Limits of Intake ALIs are calculated (which may be quoted for three main age groups, *viz* infants, children or adults). From this information, a GDL or DL may be determined by dividing the ALI by the mass of food consumed, volume of air inhaled etc. The following scheme shows the sequence involved in their calculation.

| a. | Obtain CED from tabulations | e.g. ICRP-72 |
|----|-----------------------------|--------------|
|----|-----------------------------|--------------|

- b Calculate ALI by dividing 1 mSv by the CED,
- c. Calculate GDL or DL by dividing ALI by the consumption factor.

N.B. In all calculations, the units should be consistent.

In Northern Ireland, the effluent discharges from Sellafield are the current main source of environmentally significant radioisotopes. In all cases no levels of these nuclides have been measured which either exceed or even approach closely the GDLs or DLs.

#### **RADIATION FROM NATURAL SOURCES**

The HPA (previously the NRPB) maintains surveillance on levels of radiation affecting the general public, and others, in the UK and publishes reports. The data used to construct the graphs in Figures 1 and 2 are extracted from a review conducted during 1993 (NRPB R263 - Radiation Exposure of the UK Population 1993 Review). The dose to the average person in the UK is from all sources but there can be wide variations based on geographical location. These are fully described in the report NRPB R311 that has superseded NRPB R263.



#### **OTHER GUIDELINES**

#### World Health Organisation (WHO) Guidelines for drinking water

Guideline values recommended by the WHO propose a total alpha activity level of  $100Bq/m^3$ . These values 'are specified assuming that only the most toxic radionuclides are present in significant quantities', and the recommendations conclude with the statement 'A value in excess of the guideline figure does not in itself imply that the water is unsuitable for consumption'.

#### Soil and other solids

The level of activity in unspecified soil, or other solid materials, below which no special precautions need to be considered in the disposal of that material is given as 400 Bq/kg (0.4 kBq/kg) in 'A review of Cmnd 884: The Control of Radioactive Wastes'. Certain elements have been exempted - see Statutory Instrument 1002 (June 1986).

#### **Radiation Exposure**

The principal limit for radiation exposure is now an effective dose of 1 mSv per year. The site constraint to be used in Waste Discharge Agreements with the EA is 0.5 mSv/year. This is based on the annual risk being less than the risk corresponding to an annual effective dose of 0.5 mSv i.e. a mortality risk of  $5 \times 10^{-6}$  per annum, based on 1977 ICRP values.

#### **RIMNET :** The national radiation monitoring network and emergency response system

Following the Chernobyl accident in 1986, the UK Government developed a National Response Plan to ensure that any future similar emergency could be effectively managed. The National Response Plan was, and remains, a multi departmental and agency response plan, with the now Department for Energy and Climate Change (DECC) as nominated Lead Government Department for overseas nuclear response.

RIMNET lies at the heart of the National Response Plan and over the years has developed as a multi-purpose response tool and as a platform for the effective coordination of emergency response. RIMNET now supports the UK response to any radiological event and has the potential to be used in non-radiological events.

RIMNET is managed by the Met Office, working in partnership with DECC and Defra on behalf of all government departments and agencies who would be involved in a radiological/nuclear incident, including those leading on non-overseas nuclear events.

RIMNET has a network of 94 fixed gamma dose rate monitoring sites across the UK, automatically measuring, analysing and informing on background radiation levels 24/7. All measurement and reference data is stored in the UK National Nuclear Database.

www.metoffice.gov.uk/publicsector/cbrn

## **REFERENCE LEVELS FOR RADIOACTIVE MATERIALS IN THE ENVIRONMENT**

#### GENERALISED DERIVED LIMITS

Generalised Derived Limits (GDLs) are derived and published by the National Radiological Protection Board (NRPB) (now the Health Protection Agency, HPA) for the radioactive isotopes of a small number of elements. GDLs represent a cautionary indicator taking into account the various environmental pathways to man. The limits given below apply to uniform conditions over a year and are based on the limiting age group, which is adults for all foods, except as indicated in the tables. The GDLs/DLs for food products are expressed as fresh mass (for ingestion); for grass and sediments are expressed as dry mass (for external irradiation).

|                      | Activity (Bq/kg)          |                   |                         |                    |                  |
|----------------------|---------------------------|-------------------|-------------------------|--------------------|------------------|
|                      | <sup>137</sup> Cs         | <sup>134</sup> Cs | <sup>60</sup> Co        | <sup>65</sup> Zn   | <sup>131</sup> I |
| TERRESTRIAL          |                           |                   |                         |                    |                  |
| Fresh water sediment | <b>20000</b> <sup>4</sup> | 8000 <sup>4</sup> |                         |                    |                  |
| Eggs                 | 3000                      | 2000              |                         |                    | 400              |
| Freshwater Fish      | 4000                      | 3000              |                         |                    | 2000             |
| Fruit                | 1000                      | 700               |                         |                    | $200^{2}$        |
| Grass                | 3000                      | 2000              |                         |                    | $700^{2}$        |
| Honey                | $1700^{3}$                | $1200^{3}$        |                         |                    |                  |
| Meat                 |                           |                   |                         |                    |                  |
| Pig                  | 2000                      | 1000              |                         |                    | 800 <sup>4</sup> |
| Cattle               | 2000                      | 1000              |                         |                    | $600^{2}$        |
| Sheep                | 3000                      | 2000              |                         |                    | 2000             |
| Offal                | 4000                      | 3000              |                         |                    | $1000^{2}$       |
| Poultry              | 2000                      | 2000              |                         |                    | $1000^{2}$       |
| Milk (Bq/L)          | 100                       | 100               |                         |                    | 20               |
| Milk products        | 1000                      | 900               |                         |                    | $100^{2}$        |
| Soil                 | 1000                      | 600               |                         |                    |                  |
| Vegetables           |                           |                   |                         |                    |                  |
| Rootcrop             | 600                       | 400               |                         |                    | $100^{2}$        |
| Other                | 900                       | 700               |                         |                    | 400 <sup>2</sup> |
| Marine               |                           |                   |                         |                    |                  |
| Seafish              | 700                       | 500               | 1290 <sup>1</sup>       | 2300 <sup>1</sup>  | 500              |
| Sediment             | 5000                      | 2000              |                         |                    |                  |
| Shellfish            |                           |                   |                         |                    |                  |
| Molluscs             | 4000                      | 3000              | 20000 <sup>1</sup>      | 36000 <sup>1</sup> | 2000             |
| Crustacea            | 4000                      | 3000              | <b>7900<sup>1</sup></b> | 14200 <sup>1</sup> | 2000             |

#### Notes

Not GDLs but derived limits calculated from NRPB-GS7 and NRPB-GS8. They are for the adult critical group consumers assuming an effective dose equivalent limit of lmSv.

<sup>2</sup> For infants aged 1 year

<sup>3</sup> Not GDLs but derived limits calculated from NRPB-GS7. They are for an adult critical group assuming an intake of 25 kg/yr and an effective dose equivalent limit of lmSv.

<sup>4</sup> For children aged 10 years

|                                          | Activity (Bq/kg)              |                              |                              |  |
|------------------------------------------|-------------------------------|------------------------------|------------------------------|--|
|                                          | <sup>238</sup> Pu             | <sup>239,240</sup> Pu        | <sup>241</sup> Am            |  |
| Freshwater Fish <sup>2</sup><br>Sediment | 20                            | 200                          | 200                          |  |
| Marine<br>Freshwater                     | 100000<br>400000 <sup>3</sup> | 90000<br>300000 <sup>3</sup> | 80000<br>300000 <sup>3</sup> |  |
| Seafish <sup>2</sup>                     | 40                            | 40                           | 50                           |  |
| Molluscs <sup>2</sup>                    | 200                           | 200                          | 200                          |  |
| Crustacea <sup>2</sup>                   | 200                           | 200                          | 200                          |  |
| Soil                                     | 5000                          | 5000                         | 5000                         |  |

#### Notes

For infants of 1 year.

<sup>2</sup> Only the edible fraction included.

For children aged 10 years.

NB These radioisotopes are considered to be the only ones that need to be considered in Northern Ireland at present.

# METHODOLOGY USED IN GAMMA RAY SPECTROMETRY OF ENVIRONMENTAL MATERIALS

Radiation detection is possible using a variety of techniques and the method chosen depends on the kind of information sought and the level of sensitivity required. There are numerous detectors ranging from technically simple photographic emulsions through to very sophisticated and expensive electronic devices such as that used in the present scheme. A distinction can be made between those detectors that provide general information about radiation doses or the existence of radiation emitters and those which are spectrometric. Radiation spectrometers are generally designed to measure a specific kind of radiation, i.e. alpha, beta or gamma radiation. Spectrometric devices can identify the emitters (i.e. specific isotopes) and are an essential part of a radiation monitoring scheme concerned with determining the possible extent of environmental contamination.

The current scheme operating at the National Oceanography Centre, Southampton involves the counting of environmental materials using high-resolution gamma ray and alpha spectrometers.

## GAMMA RAY SPECTROMETRY

All laboratory measurements are made using Canberra Industries gamma ray spectrometers (30% efficiency P-type HPGe, high purity germanium) linked to associated pulse processing NIM modules (Nuclear Instrument Modules). The counting electronics are of the latest Canberra design (AIM & ICB) and run under control from Genie-PC. The radiation detectors are housed in purpose-built lead shields in order to reduce the contribution from background radioactivity. There are several orders of magnitude reduction in the intensity of such isotopes as <sup>40</sup>K and uranium and thorium decay chain products (i.e. isotopes occurring in the immediate environment which exist naturally) when using such a well-shielded set-up. Specially selected 'low background' lead is used in the shields and they consist of a closed cylinder having a wall thickness of 100 mm.

Samples are generally counted in 0.5 or 1 litre Marinelli beakers. Most samples have been counted for approximately 12 hours.

| Radionuclide     | <b>Detection Limit</b> | Isotope           | <b>Detection Limit</b> |
|------------------|------------------------|-------------------|------------------------|
| <sup>54</sup> Mn | 1 Bq/kg                | <sup>60</sup> Co  | 1 Bq/kg                |
| <sup>51</sup> Cr | 10  Bq/kg              | <sup>65</sup> Zn  | 2 Bq/kg                |
| <sup>59</sup> Fe | 2 Bq/kg                | <sup>131</sup> I  | 1 Bq/kg                |
| <sup>57</sup> Co | 1 Bq/kg                | <sup>134</sup> Cs | 1 Bq/kg                |
| <sup>58</sup> Co | 1 Bq/kg                | <sup>137</sup> Cs | 1 Bq/kg                |

#### TABLE F.1: NOMINAL DETECTION LIMITS FOR GAMMA-EMITTING RADIONUCLIDES

#### Notes

- 1. Detection limits are calculated for a 60,000 second count.
- 2. Detection limits are calculated according to Currie (Analytical Chemistry Vol 40 1968).
- 3. Detection limits should be viewed with respect to the Generalised Derived Limits (GDL) given for a particular material. In all cases, the detection limits are well below the GDLs (see comparative table of results).
- 4. The detection limits shown are those for a particular sample type and may be higher or lower for other samples. For example, the detection limits for milk will be slightly lower than those shown above

#### SPECTRAL DATA REDUCTION

Gamma ray spectra are processed using a sophisticated PC software package FITZPEAKS (JF Computing Services, Stanford in the Vale, Oxon). It uses sophisticated mathematical fitting routines to derive a reliable indicator that is proportional to the activity of an isotope. Numerous other features are available which correct for decay and aid in the identification of the isotopes. The ultimate assigning of isotopes is always accompanied by a close visual inspection of each gamma spectrum to ensure that no errors have occurred.

### **DETECTOR EFFICIENCY CALIBRATION**<sup>1</sup>

The calibration of a gamma ray spectrometer for activity measurements requires considerable care if reliable lowlevel data are to be obtained. The need for such a calibration is due to the non-uniform response of HPGe radiation detectors to gammas of different energy and because the detector does not record all nuclear decays. A mixed radionuclide solution of known and certified activity was obtained from Amersham International (code QCY.44) or the National Physical Laboratory (Teddington) and was carefully diluted in a polythene bottle. Carefully weighed portions of this solution were then weighted into PTFE beakers and about 2 grams of a mixture of 200-400 mesh cation exchange resin (in equilibrium with distilled water) and chromatographic cellulose were added. The mixture was stirred for about 1 hour and the solution was then slowly evaporated to dryness. The resulting dry residue containing the radionuclides was ground with a portion of one of several matrices (powdered shale, alcohol-washed and sieved dried fish and cellulose powder). The remaining part of the chosen matrix (which had been previously found to be sufficient to occupy the counting beaker) was then shaken for about 30 minutes in a large plastic tub with the radionuclide bearing powder. Care was taken to ensure that no activity remained in any container at any stage of the preparation. This was achieved by counting the empty containers in the gamma ray spectrometer to confirm that all activity was quantitatively transferred. Each kind of sample was counted and its activity determined using a calibration standard of equivalent composition and geometrical form.

#### SAMPLE PREPARATION FOR GAMMA SPECTROSCOPY

Generally, large samples of biological materials contain low levels of radionuclides. Sample preparation is concerned with fitting the maximum amount of material into a fixed geometry after minimum pre-treatment. Most biological materials have a very high water content (50-90% body weight). Thus, for samples of biological origin, volume reduction is achieved by dehydration using freeze-drying.

Solid biological materials - vegetation, fish, shellfish and meat - are chopped into strips/cubes prior to freezing on stainless steel trays. In the case of consumable produce (such as root crop, fish and shellfish) only the edible fractions are frozen. The frozen products are loaded onto heater mats within the vacuum chamber of the freeze-drying apparatus. The chamber is evacuated to a set minimum pressure, at which heat is supplied from the heater mats to the frozen samples. Under these conditions, ice within the samples is changed directly from the solid to the vapour state. The evolved water vapour is trapped within the condenser of the refrigerator unit. The dry tissues are removed from the trays and set aside for counting. Where necessary, materials undergo further chopping to ensure a homogenous distribution within the counting receptacle.

Non-biological samples (i.e. soils and sediment) are oven-dried at 80°C.

The dried materials can be stored almost indefinitely at room temperature without the addition of a preservative.

<sup>1</sup> I. W. Croudace (1991) A reliable and accurate procedure for preparing low-activity efficiency calibration standards for germanium gammaray spectrometers. J. Radioanal.Nucl.Chem.Lett. 153, 151-162.

#### **ALPHA SPECTROMETRY & THE TRANSURANIC ELEMENTS**

The large-scale introduction of transuranic elements into the environment arose initially from the detonation of nuclear weapons in the atmosphere in the 1950s. A test-ban treaty on atmospheric testing was agreed between the USSR, USA and the UK in 1963; China, France, India and Pakistan are still not signatories. In addition the burn-up on re-entry of satellite power packs for example a SNAP-9, has added to the inventory. The radionuclide content of these events has resulted in widespread low-level contamination. Another major source of transuranics has been the deliberate, controlled discharge of low-level effluents from the nuclear power industry. Accidental releases of transuranics to the environment have occurred from nuclear plant operations and from the transport of nuclear weapons (i.e. Windscale Fire 1957; Three Mile Island 1978; Chernobyl 1986; Palomares, Spain 1966 and Thule, Greenland 1968).

| Nuclide            | Amount, TBq           | Half life, years   |  |
|--------------------|-----------------------|--------------------|--|
| <sup>238</sup> Pu  | 890                   | 87 7               |  |
| <sup>239</sup> Pu  | $5.7 \times 10^3$     | $2.41 \times 10^4$ |  |
| <sup>240</sup> Pu  | $7.7 \times 10^3$     | $6.57 \ge 10^3$    |  |
| $^{241}Pu^{*}$     | $3.6 \times 10^5$     | 14.1               |  |
| <sup>241</sup> Am# | $1.2 \text{ x } 10^4$ | 433                |  |

TABLE F.2: TRANSURANIUM ELEMENTS RELEASED TO THE ATMOSPHERE

Notes

\* Largely decayed to <sup>241</sup>Am

# Derived from <sup>241</sup>Pu by decay

 $1 \text{ TBq} = 10^{12} \text{Bq}$ 

#### **RECOGNITION OF TRANSURANIC SOURCES**

<sup>239,240</sup>Plutonium and <sup>241</sup>Americium are the main transuranics produced from nuclear weapons testing, whereas
 <sup>238</sup>Plutonium and <sup>241</sup>Americium will be the main isotopes from nuclear reactor operations. The ratio,
 <sup>238</sup>Plutonium/<sup>239,240</sup>Plutonium, can be used to elucidate the origin of Plutonium in the environment. The various potential sources of Plutonium and some typical ratios associated with these operations are listed in Table 3.

#### TABLE F.3: TYPICAL <sup>238</sup>PLUTONIUM/<sup>239,240</sup>PLUTONIUM RATIOS

| Source                                           | Ratio         |
|--------------------------------------------------|---------------|
| Atmospheric fallout from nuclear weapons testing | 0.036 - 0.076 |
| Satellite re-entries                             | 0.5 - 2.0     |
| Nuclear fuel reprocessing                        | 0.2 - 3.0     |
| Nuclear power stations                           | 0.4 - 0.8     |

#### **COMPARATIVE DATA**

The major repositories of transuranics in the environment are in soils and sediments. Some typical activity values are listed in Table 4 in order to put our data in perspective.

#### **TABLE F.4: PLUTONIUM IN SOILS AND SEDIMENTS**

| Source and Location                                                                                                                                                                | Amount Bq/kg                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Nuclear weapon testing<br>Global fallout <sup>1</sup><br>Chemical reprocessing<br>Irish Sea (sediment) <sup>1</sup><br>Winfrith (silt)<br>Chemical Leberds (codiment) <sup>2</sup> | 0.02 - 0.7<br>10 - 2000<br>1.12 - 1.34<br>0.271 - 2.40 |

Notes

<sup>1</sup> Allard et. al. 1984

<sup>2</sup> MAFF aquatic environment monitoring report No 19 1988.

#### CHEMICAL SEPARATION PROCEDURES

Since alpha particles have very short penetration depths it is necessary to apply complex means to identify their presence. They have to be isolated from all other elements and presented to the detector as an ultra-thin layer (via electrode position, for example) if high quality data are to be obtained. The critical factor in the determination of transuranic elements by alpha spectrometry is how effectively a chosen separation scheme can eliminate not only the interfering natural alpha emitters i.e. uranium, thorium and polonium but also stable elements such as iron, rare earth elements, manganese etc. These elements can impair the alpha spectra when they are electrodeposited together with the transuranics onto the counting planchettes. Consequently an adequate scheme of sequential procedures for the separation of transuranic elements preferred at Southampton is outlined below.

The scheme can be divided into 4 parts

- i) Pre-treatment (freeze-drying, ashing, etc)
- ii) Fusion or acid leaching
- iii) Chemical Separation
- iv) Electrodeposition

Inspection of the alpha spectra of plutonium and americium shows that the separation scheme used performs satisfactorily. The chemical yield ranges normally between 30-100%. The electrode position of the plutonium and americium (plated separately) takes place in an ammonium oxalate-HCl medium at a pH of 2-3, onto a stainless steel disc under an electric current of 300mA (nominally 10 V for 2.5 hours).

Internal tracers are used in each sample to facilitate activity determinations and to monitor the chemical efficiency of the procedure. <sup>242</sup>Pu and <sup>243</sup>Am are used as tracers because of their long half-lives, thereby not requiring any decay corrections and also because their respective peaks can be easily resolved from the nuclides of interest. Blank analyses are also made to monitor the effect of reagent impurities. Results so far indicate that this represents less than 1% of the recorded activity. Cross contamination of glassware etc is avoided by the use of good laboratory practices, namely the soaking of all glassware in acid, then Decon for 24 hours, followed by washing in hot water and distilled water.

In many analytical techniques a lower limit of detection is defined in terms of the background. Since there is zero background in alpha spectrometry this is not possible. Any background that is present is non-random and is due mostly to the contamination of the detectors. In alpha spectrometry the question is, whether a peak is real or not and thus it is necessary to define a threshold value for peak recognition. This value is set arbitrarily at 10 counts over a 200,000 second counting time and the detection limits for isotopes is 0.01Bq.

#### ALPHA SPECTROMETRY

The electroplated discs are counted with Passivated Implanted Planar Silicon (PIPS) detectors (Canberra Industries), with active areas of 450 mm<sup>2</sup> (res. <20 keV), installed in a Canberra Quad<sup>®</sup> chamber connected through ICB ADC and mixer-routers. A GENIE-PC system controls the system hardware. A counting time of at least 300000 seconds is used to count the very low activity levels of transuranics found in the samples examined to date.

The alpha spectrometers are calibrated for their energy response and counting efficiency. All the detectors are calibrated to have an energy response that places the various alpha-energies in the same relative positions. The counting efficiency is essentially the geometrical efficiency of the detector relative to the source position for accepting alpha particles from the source. It is determined from counts for a source that has a known activity but the quantification of the sample activities does not depend on this efficiency.

## BETA ANALYSIS OF ENVIRONMENTAL MATERIALS

Technetium-99 (<sup>99</sup>Tc) is a low energy, pure beta emitter that concentrates in some marine biota. The element is highly volatile in certain oxidation states and to prevent loss of Tc controlled conditions have to be applied throughout the methodology to ensure complete chemical recovery along with ensuring good decontamination from interfering isotopes. Isotopes, which will interfere with the beta analysis, such as Ruthenium isotopes, have to be completely eliminated along with stable elements such as iron and calcium which will adversely affect the determination of Tc.

The final measurement of the samples is performed using Liquid Scintillation Counting (LSC). <sup>99m</sup>Tc as pertechnetate is used as a yield monitor.

The analytical scheme can be divided into four parts

| i)   | Preliminary treatment | Ashing, acid digestion)            |
|------|-----------------------|------------------------------------|
| ii)  | Purification          | Precipitation, solvent extraction) |
| iii) | Final measurement     | Liquid scintillation Counting      |

#### BETA ANALYSIS OF ENVIRONMENTAL MATERIALS (cont)

The samples are ashed under controlled conditions after the <sup>99m</sup>Tc yield monitor has been added. An acid digestion stage follows which solubilises the Tc present. A precipitation step is carried out to remove any iron and calcium that can cause interferences and reduce the solvent extraction efficiency. <sup>99</sup>Tc is purified by a combination of anion exchange and solvent extraction.

The organic phase is mixed directly with a commercially available scintillant and <sup>99m</sup>Tc determined by gamma spectrometry. The sample was stored for a week to allow the <sup>99m</sup>Tc to completely decay and the <sup>99</sup>Tc activity is determined by LSC.

#### References

F Wigley, P E Warwick, I W Croudace, J Caborn & A.L. Sanchez (1999) Optimised method for the routine determination of Technetium-99 in environmental samples by liquid scintillation counting. Analytica Chimica Acta 380, 73 - 82

#### ASSESSMENT OF DATA QUALITY

The activity data quoted in the appendices are reported without any uncertainties or confidence limits. The reason for this is to prevent needless clutter or confusion. However, data quality assessments are made regularly by the following means:-

- a. measuring certified reference materials (e.g. those produced by the International Atomic Energy Authority, IAEA
- b. measuring reference samples produced by other independent laboratories
- c. producing multiple standards using certified and traceable activity standards (e.g., as supplied through Amersham International and the National Physical Laboratory.)

Results of inter-laboratory measurements and detection limits allow some assessment of data accuracy and precision without the need for quoting confidence limits with all the reported data.

The following tables present radioanalytical data produced in various quality assessment exercises.

#### QUALITY ASSURANCE - GAMMA

An assessment of the accuracy of sample activities can be achieved in a number of ways. One means is to count a sample measured in one or more independent laboratories and to compare the results.

The method used to check data accuracy involves using a range of natural matrix reference materials, NMRMs or prepared standards. (See tables 5 - 7).

Data from inter-comparison exercises are presented in Table 10.

#### TABLE F.5: QUALITY ASSURANCE ASSESSMENTS (Bq/kg) - GAMMA

| IAEA <sup>1</sup> Sample | Isotope           | <b>Recommended</b> or  | Measured at | Measured            |
|--------------------------|-------------------|------------------------|-------------|---------------------|
|                          |                   | <b>Certified Value</b> | Southampton | at ITE <sup>3</sup> |
|                          |                   |                        |             |                     |
| Fish                     | <sup>137</sup> Cs | 14.2                   | 15.3        | 16.0                |
| F72                      | $^{40}$ K         | -                      | 340         | 330                 |
| Sediment                 | <sup>60</sup> Co  | 11.5                   | 10.8        | 12.2                |
| S36                      | <sup>137</sup> Cs | 13.9                   | 14.6        | 14.1                |
| Sediment                 | <sup>137</sup> Cs | -                      | 52.7        | 55.0                |
| S71                      |                   |                        |             |                     |
| Sediment                 | <sup>137</sup> Cs | 53.7                   | 54.9        | 52.8                |
| S43                      |                   |                        |             |                     |
| Seaweed                  | <sup>54</sup> Mn  | 19.7                   | nd          | nd                  |
| A17                      | <sup>60</sup> Co  | 1360                   | 1340        | 1396                |
|                          | <sup>137</sup> Cs | 16.7                   | 17.0        | 15.8                |
| Pine needles             | <sup>137</sup> Cs | 110                    | 112         | -                   |
| CLV-1 <sup>2</sup>       |                   |                        |             |                     |
|                          |                   |                        |             |                     |

#### Notes

<sup>1</sup> IAEA International Atomic Energy Authority reference samples.

<sup>2</sup> CLV-1 Pine needles reference samples supplied by the Canadian National Uranium Tailings Program.

<sup>3</sup> ITE Institute of Terrestrial Ecology, Merelwood Laboratory, Grange-over-Sands, Cumbria.

#### **TABLE F.6: QUALITY ASSURANCE DATA - GAMMA**

|                                    | Sample CLV-1 <sup>1</sup>                                                                        | Measured at Southampton                            | Provisional Value <sup>2</sup>                                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1. <sup>3</sup><br>2. <sup>3</sup> | <sup>137</sup> Cs<br>U (via <sup>234</sup> Th)<br><sup>137</sup> Cs<br>U (via <sup>234</sup> Th) | 0.115 Bq/g<br>1.12 Bq/g<br>0.112 Bq/g<br>1.11 Bq/g | $\begin{array}{ccc} 0.11 & Bq/g \\ 1.07 \pm 0.06 \; Bq/g \\ 0.11 & Bq/g \\ 1.07 \pm 0.06 \; Bq/g \end{array}$ |

#### Notes

<sup>1</sup> CLV-1 Pine needles reference samples supplied by the Canadian National Uranium Tailings Program.

<sup>2</sup> Values taken from 'Vegetative radionuclide reference materials' by L Dalton and W S Bowman (1986), NUTP-4E, ISBN 0-660-12231-6.

 $^3$  Samples 1 and 2 were prepared using different weighed portions of CLV-1 independently as two samples in different counting geometries.

#### TABLE F.7: PROFICIENCY TESTING SCHEME

| Sample  | Isotope           | AEA Target<br>Value | Measured at<br>Southampton | All Laboratory Range |
|---------|-------------------|---------------------|----------------------------|----------------------|
| Milk    | <sup>137</sup> Cs | 182                 | 217<br>226                 | 162 - 279            |
| Cabbage | <sup>137</sup> Cs | 63.5                | 73                         | 58 - 85              |

#### **QUALITY ASSURANCE - ALPHA**

In any chemical procedure continuous quality control is required which is able to assess both the precision and accuracy of the methods used. The precision or reproducibility of a method can be monitored by including a suitably reliable 'in-house' reference sample with each batch of samples. Accuracy is more difficult to assess and is partly controlled by the reliability of the isotopic tracer used. The use of natural matrix reference materials (NMRM) provides a way of assessing the accuracy (Table 8).

#### TABLE F.8: ANALYSIS OF REFERENCE SAMPLES (Bq/kg) – ALPHA EMITTERS

| IAEA <sup>1</sup> Sample                        | Isotope                                                         | Recommended or                        | Measured at Southampton      |
|-------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|------------------------------|
|                                                 |                                                                 | Certified Value                       |                              |
| IAEA-307<br>(Sea-plant)<br>(Posidonia oceanica) | <sup>238</sup> Pu<br><sup>239,240</sup> Pu<br><sup>241</sup> Am | 0.025<br>0.72                         | 0.03<br>0.69<br>0.2          |
| IAEA-308<br>(Mediterranean seaweed)             | <sup>238</sup> Pu<br><sup>239,240</sup> Pu<br><sup>241</sup> Am | 0.017<br>0.5<br>0.17                  | 1) 0.03<br>1) 0.48<br>1) 0.3 |
| IAEA-134<br>(Cockles)                           | <sup>239,240</sup> Pu<br><sup>241</sup> Am                      | 15<br>38                              | 15<br>36                     |
| IAEA-135                                        | <sup>239,240</sup> Pu<br><sup>241</sup> Am                      | 213<br>318                            | 187<br>318                   |
| IAEA-367                                        | <sup>239,240</sup> Pu<br><sup>241</sup> Am                      | 38<br>26.4                            | 34<br>24                     |
| IAEA-384<br>(Sediment)                          | <sup>238</sup> Pu<br><sup>239,240</sup> Pu<br><sup>241</sup> Am | 38.1 – 40.1<br>105 - 110<br>6.7 – 7.6 | 36.70<br>103.35<br>24        |

Notes

1 IAEA International Atomic Energy Authority reference samples.

not counted

### QUALITY CONTROL - BETA

Quality control in the analysis of Technetium-99 is aimed at ensuring the precision of the measurement. A spiked sample is analysed along with each batch of samples. The background and counting efficiency of the samples are determined for each batch of samples counted. Participation in inter-comparison exercises helps estimate the accuracy of the procedure (see Tables 9 & 10).

With reference to results in Table 10, for the National Physical Laboratory (NPL) Inter-comparison in 1995, only spiked water samples were supplied and the validation was limited. For the NPL exercise in 2007, analyses were again performed on spiked aqueous samples. The MAFF/FSA exercise of 2000 supplied samples more appropriate for the assessment of analysis of environmental and food material.

|                        |                  | Me                       | asured at Southampto     | n: Bq kg <sup>-1</sup>   |  |
|------------------------|------------------|--------------------------|--------------------------|--------------------------|--|
| Sample                 | Α                | В                        | С                        | D                        |  |
| -                      | 3.9              | 35.7                     | 4.21                     | 16.3                     |  |
|                        | 6.8              | 36.9                     | 4.32                     | 16.5                     |  |
|                        |                  | 33.8                     | 4.17                     | 17.7                     |  |
|                        |                  |                          | 4.13                     | 15.2                     |  |
| Mean                   | 5.3              | 36.7                     | 4.21                     | 16.4                     |  |
|                        |                  | Measu                    | ured at all laboratories | (8): Bq kg <sup>-1</sup> |  |
|                        |                  |                          |                          |                          |  |
| Sample                 | Α                | В                        | С                        | D                        |  |
| Sample<br>Mean         | A<br>8.0         | <b>B</b><br>61.3         | C<br>5.3                 | <b>D</b><br>18.2         |  |
| Sample<br>Mean<br>High | A<br>8.0<br>18.8 | <b>B</b><br>61.3<br>88.5 | C<br>5.3<br>15.7         | <b>D</b><br>18.2<br>23.2 |  |

#### TABLE F.9: TECHNETIUM 99 CALIBRATION EXERCISE (SURRC 1998)

#### **TABLE F.10: INTERCOMPARISON EXERCISES**

| NPL (2002) ${}^{22}Na$ $2.024 \pm 0.010$ $1.95 \pm 0.07$ Comparison exercise ${}^{76}Co$ $2.024 \pm 0.020$ $1.99 \pm 0.06$ (high-level activity - N.B. Bag) ${}^{76}Co$ $2.008 \pm 0.008$ $1.97 \pm 0.06$ BG1009/02 ${}^{16}Co$ $2.008 \pm 0.008$ $1.97 \pm 0.06$ ${}^{13}Cc$ $2.022 \pm 0.011$ $1.92 \pm 0.18$ ${}^{13}Cc$ $2.025 \pm 0.016$ $1.99 \pm 0.06$ ${}^{13}Cc$ $2.015 \pm 0.017$ $1.92 \pm 0.06$ ${}^{13}Ea$ $2.041 \pm 0.024$ $2.01 \pm 0.015$ ${}^{13}Ea$ $2.041 \pm 0.023$ $2.00 \pm 0.04$ ${}^{13}Ea$ $2.041 \pm 0.023$ $2.00 \pm 0.04$ ${}^{13}Ppu$ $2.000 \pm 0.016$ $2.02 \pm 0.04$ ${}^{13}Ppu$ $2.002 \pm 0.04$ $2.02 \pm 0.04$ ${}^{13}Ppu$ $2.065$ $11.72 \pm 0.51$ ${}^{14}C$ $3.037 \pm 0.029$ $3.33 \pm 0.35$ ${}^{11}Cc$ $3.52 \pm 0.021$ $2.88 \pm 0.40$ ${}^{13}Ppu$ $2.763 \pm 0.011$ $2.59 \pm 0.10$ ${}^{14}C$ $160 \pm 10$ $161 \pm 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample                                       | Isotope               | Recommended Activity (Bq/kg) | Measured Activity   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|------------------------------|---------------------|
| $ \begin{array}{c} \text{Comparison exercise} \\ (high-level activity - N.B. Bq/g) \\ \text{BG100902} \\ & \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NPL (2002)                                   | <sup>22</sup> Na      | $2.024 \pm 0.010$            | $1.95 \pm 0.07$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comparison exercise                          | <sup>57</sup> Co      | $2.024 \pm 0.020$            | $1.99 \pm 0.06$     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (high-level activity - N.B. Bq/g)            | <sup>60</sup> Co      | $2.008 \pm 0.008$            | $1.97 \pm 0.06$     |
| ABH006/002 $10^{10}$ Ru       2.012 ± 0.011       1.92 ± 0.18 $11^{10}$ Cs       2.025 ± 0.015       1.98 ± 0.06 $11^{10}$ Cs       2.015 ± 0.015       1.98 ± 0.06 $11^{10}$ Eu       2.041 ± 0.024       2.01 ± 0.15 $21^{10}$ Pu       2.000 ± 0.016       2.02 ± 0.04 $21^{10}$ Pu       2.000 ± 0.016       2.02 ± 0.04 $21^{10}$ Pu       1.991 ± 0.023       2.00 ± 0.04         UK-NPL (2003)       (Inter-comparison exercise)       1.172 ± 0.51         BGL/03/*** $6^{10}$ Co       2.247 ± 0.007       2.39 ± 0.35         (ABL/03/***) $6^{10}$ Co       2.247 ± 0.0029       3.93 ± 0.35 $11^{12}$ Cs       2.532 ± 0.021       2.88 ± 0.40       2.39^{10} ± 0.51 $11^{12}$ Cs       2.537 ± 0.011       2.59 ± 0.10       2.39^{10} ± 0.51 $11^{12}$ Cs       2.522 ± 0.021       2.88 ± 0.40       2.39^{10} ± 0.51 $11^{12}$ Cs       2.522 ± 0.021       2.88 ± 0.40       2.39^{12} ± 0.01 $11^{12}$ Cs       2.592 ± 0.011       2.59 ± 0.10       2.39^{12} ± 0.01 $21^{10}$ Pu       2.035 ± 0.011       2.59 ± 0.10       2.39 ± 0.10 $31^{12}$ Cs       10189 ± 16       9425 ± 443       2.31 ± 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BGH009/02                                    | <sup>95</sup> Zr      | $1.943 \pm 0.032$            | $1.89 \pm 0.12$     |
| $ \begin{array}{cccc} \begin{tabular}{ c c c c c c c } & 1 & 1 & 2 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ABH006/002                                   | <sup>106</sup> Ru     | $2.012 \pm 0.011$            | $1.92 \pm 0.18$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>134</sup> Cs     | $2.025 \pm 0.016$            | $1.90 \pm 0.06$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>137</sup> Cs     | $2.015 \pm 0.015$            | $1.98 \pm 0.06$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>154</sup> Eu     | $2.081 \pm 0.017$            | $1.92 \pm 0.06$     |
| $\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | 155Eu                 | 2.041 + 0.024                | $2.01 \pm 0.15$     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | <sup>238</sup> Pu     | $2.000 \pm 0.016$            | $2.02 \pm 0.04$     |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>239</sup> Pu     | $1.991 \pm 0.023$            | $2.00 \pm 0.04$     |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UK-NPL (2003)<br>(Inter-comparison exercise) |                       |                              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BGL/03/***                                   | <sup>60</sup> Co      | $2.247 \pm 0.007$            | $2.39 \pm 0.35$     |
| $\label{eq:second} \text{UK-NPL (2005)}  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ABL/03/***)                                 | <sup>90</sup> Sr      | $11.942 \pm 0.035$           | $11.72 \pm 0.51$    |
| eq:space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-space-                                                                                                                                                                                                                                                                                            |                                              | <sup>134</sup> Cs     | $3.937 \pm 0.029$            | $3.93 \pm 0.35$     |
| $\label{eq:constraint} UK-NPL (2005) $$ \frac{238}{24} Pu $$ 2,763 \pm 0.011 $$ 2,59 \pm 0.10 $$ 3.16 \pm 0.12 $$ \frac{239}{24} Pu $$ 3,293 \pm 0.016 $$ 3.16 \pm 0.12 $$ \frac{231}{24} Pu $$ 3.058 \pm 0.023 $$ 2.37 \pm 0.08 $$ UK-NPL (2005) $$ \frac{14}{C} $$ 160 \pm 10 $$ 161 \pm 21 $$ 99Sr $$ 10189 \pm 16 $$ 9425 \pm 443 $$ \frac{238}{238} Pu $$ 2607 \pm 9 $$ 2765 \pm 174 $$ \frac{239,240}{239,240} Pu $$ 660 \pm 30 $$ 6388 \pm 257 $$ \frac{234}{4} Am $$ 3691 \pm 13 $$ 3550 \pm 355 $$ UK-NPL (2007) $$ \frac{60}{C} $$ 11.72 \pm 0.04 $$ 12.3 \pm 0.4 $$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$$$ \frac{99}{5} Sr $$ 17.06 \pm 0.03 $$ 17.4 \pm 0.8 $$$$$$$ \frac{132}{5} Sr $$$$$ 132 $$ 132 $$ 132 $$ 101 $$ 133 $$ 135 $$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <sup>137</sup> Cs     | $2.522 \pm 0.021$            | $2.88 \pm 0.40$     |
| $\label{eq:constraint} UK-NPL (2005) $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | <sup>238</sup> Pu     | $2.763 \pm 0.011$            | $2.59 \pm 0.10$     |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | <sup>239</sup> Pu     | $3.293 \pm 0.016$            | $3.16 \pm 0.12$     |
| $\begin{array}{ccccc} {\bf UK-NPL}  ({\bf 2005}) & \begin{array}{ccccc} {}^{14}{\rm C} & 160 \pm 10 & 161 \pm 21 \\ {}^{90}{\rm Sr} & 10189 \pm 16 & 9425 \pm 443 \\ {}^{238}{\rm U} & 1059 \pm 24 & 1031 \pm 179 \\ {}^{239}{}^{239}{\rm Pu} & 2607 \pm 9 & 2765 \pm 174 \\ {}^{239}{}^{240}{\rm Pu} & 6060 \pm 30 & 6388 \pm 257 \\ {}^{241}{\rm Am} & 3691 \pm 13 & 3569 \pm 355 \end{array} \\ \\ \begin{array}{c} {\rm UK-NPL}  ({\bf 2007}) & \begin{array}{c} {}^{60}{\rm Co} & 11.72 \pm 0.04 & 12.3 \pm 0.4 \\ {}^{90}{\rm Sr} & 17.06 \pm 0.03 & 17.4 \pm 0.8 \\ {}^{96}{\rm Tc} & 6.501 \pm 0.015 & 6.2 \pm 0.5 \\ {}^{129}{\rm I} & 372 \pm 4 & 360 \pm 10 \\ {}^{134}{\rm Cs} & 4.07 \pm 0.03 & 4.5 \pm 0.3 \\ {}^{137}{\rm Cs} & 8.84 \pm 0.06 & 9.4 \pm 0.4 \\ {}^{238}{\rm Pu} & 17.13 \pm 0.08 & 18 \pm 1 \\ {}^{239}{\rm Pu} & 19.48 \pm 0.12 & 20 \pm 1 \\ {}^{241}{\rm Am} & 10.07 \pm 0.04 & 9.4 \pm 0.4 \\ {}^{238}{\rm Pu} & 17.29 \pm 0.08 & 15.84 \pm 0.99 \\ {}^{14}{\rm C} & 0.1398 \pm 0.008 & 15.84 \pm 0.09 \\ {}^{239}{\rm Pu} & 17.29 \pm 0.08 & 15.84 \pm 0.09 \\ {}^{14}{\rm Cc} & 0.1398 \pm 0.008 & 3.53 \pm 0.17 \\ {}^{239}{\rm Pu} & 17.29 \pm 0.08 & 3.53 \pm 0.45 \\ {}^{60}{\rm Co} & 3.427 \pm 0.008 & 3.53 \pm 0.45 \\ {}^{60}{\rm Co} & 3.427 \pm 0.008 & 3.53 \pm 0.17 \\ {}^{95}{\rm Zr} & 1.878 \pm 0.015 & 1.87 \pm 0.12 \\ {}^{95}{\rm Nb} & 4.08 \pm 0.04 & 4.32 \pm 0.21 \\ {}^{143}{\rm Cs} & 5.81 \pm 0.05 & 6.03 \pm 0.29 \\ {}^{175}{\rm Cs} & 10.43 \pm 0.07 & 10.72 \pm 0.50 \\ {}^{175}{\rm Eu} & 1.178 \pm 0.13 & 11.93 \pm 0.58 \\ {}^{154}{\rm Eu} & 0.194 \pm 0.04 & 2.10 + 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | <sup>241</sup> Am     | $3.058 \pm 0.023$            | $2.37 \ \pm \ 0.08$ |
| $\label{eq:spin starting} UK-NPL (2010) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UK-NPL (2005)                                | <sup>14</sup> C       | $160 \pm 10$                 | $161 \pm 21$        |
| $\label{eq:second} \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | <sup>90</sup> Sr      | $10189 \pm 16$               | $9425 \pm 443$      |
| $\label{eq:constraint} UK-NPL (2010) $ \begin{array}{c} 238 P_{11} & 2607 \pm 9 & 2765 \pm 174 \\ 239,240 P_{11} & 6060 \pm 30 & 6388 \pm 257 \\ 241 Am & 3691 \pm 13 & 3569 \pm 355 \end{array} \\ UK-NPL (2007) $ \begin{array}{c} 60 C_0 & 11.72 \pm 0.04 & 12.3 \pm 0.4 \\ 90 Sr & 17.06 \pm 0.03 & 17.4 \pm 0.8 \\ 98 T_C & 6.501 \pm 0.015 & 6.2 \pm 0.5 \\ 129 I & 372 \pm 4 & 360 \pm 10 \\ 143 C_S & 4.07 \pm 0.03 & 4.5 \pm 0.3 \\ 137 C_S & 8.84 \pm 0.06 & 9.4 \pm 0.4 \\ 238 P_{11} & 17.13 \pm 0.08 & 18 \pm 1 \\ 239 P_{12} & 19.48 \pm 0.12 & 20 \pm 1 \\ 241 Am & 10.07 \pm 0.04 & 9.4 \pm 0.4 \\ 123 P_{12} & 210 \pm 1 \\ 241 Am & 10.07 \pm 0.04 & 9.4 \pm 0.4 \\ 158 P_{12} & 210 P_{11} & 17.29 \pm 0.08 & 15.84 \pm 0.99 \\ 14 C & 0.1398 \pm 0.0009 & 0.16 \pm 0.02 \\ 7 Be & 4.24 \pm 0.08 & 4.23 \pm 0.45 \\ 6^{60} C_0 & 3.427 \pm 0.008 & 3.53 \pm 0.17 \\ 9^{5} Zr & 1.878 \pm 0.015 & 1.87 \pm 0.12 \\ 9^{5} Nb & 4.08 \pm 0.04 & 4.32 \pm 0.21 \\ 14^{14} C_S & 5.81 \pm 0.05 & 6.03 \pm 0.29 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.07 & 10.72 \pm 0.50 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.58 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.58 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.58 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.58 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.58 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.77 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.78 \\ 14^{14} C_S & 5.81 \pm 0.01 & 11.93 \pm 0.77 \\ 14^{14} C_S & 5.81 \pm 0.01 & 1$ |                                              | <sup>238</sup> U      | $1059 \pm 24$                | $1031 \pm 179$      |
| $\label{eq:constraint} UK-NPL (2007) \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | <sup>238</sup> Pu     | $2607 \pm 9$                 | $2765 \pm 174$      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | <sup>239,240</sup> Pu | $6060 \pm 30$                | $6388 \pm 257$      |
| $ \begin{array}{cccccc} \textbf{UK-NPL (2007)} & \begin{array}{c} {}^{60}\text{Co} & 11.72 \ \pm \ 0.04 & 12.3 \ \pm \ 0.4 \\ {}^{90}\text{Sr} & 17.06 \ \pm \ 0.03 & 17.4 \ \pm \ 0.8 \\ {}^{98}\text{Tc} & 6.501 \ \pm \ 0.015 & 6.2 \ \pm \ 0.5 \\ {}^{129}\text{I} & 372 \ \pm \ 4 & 360 \ \pm \ 10 \\ {}^{134}\text{Cs} & 4.07 \ \pm \ 0.03 & 4.5 \ \pm \ 0.3 \\ {}^{137}\text{Cs} & 8.84 \ \pm \ 0.06 & 9.4 \ \pm \ 0.4 \\ {}^{238}\text{Pu} & 17.13 \ \pm \ 0.08 & 18 \ \pm \ 1 \\ {}^{239}\text{Pu} & 19.48 \ \pm \ 0.12 & 20 \ \pm \ 1 \\ {}^{241}\text{Am} & 10.07 \ \pm \ 0.04 & 9.4 \ \pm \ 0.4 \\ \end{array} \right. \\ \begin{array}{c} \textbf{UK-NPL (2010)} & \begin{array}{c} 2^{38}\text{Pu} & 18.08 \ \pm \ 0.06 & 16.32 \ \pm \ 1.01 \\ {}^{239}\text{Pu} & 17.29 \ \pm \ 0.08 & 15.84 \ \pm \ 0.99 \\ {}^{4}\text{C} & 0.1398 \ \pm \ 0.0099 & 0.16 \ \pm \ 0.02 \\ {}^{7}\text{Be} & 4.24 \ \pm \ 0.08 & 3.53 \ \pm \ 0.17 \\ {}^{95}\text{Zr} & 1.878 \ \pm \ 0.015 & 1.87 \ \pm \ 0.12 \\ {}^{95}\text{Nb} & 4.08 \ \pm \ 0.04 & 4.32 \ \pm \ 0.21 \\ {}^{95}\text{Nb} & 4.08 \ \pm \ 0.04 & 4.32 \ \pm \ 0.21 \\ {}^{95}\text{Nb} & 4.08 \ \pm \ 0.04 & 4.32 \ \pm \ 0.21 \\ {}^{95}\text{Nb} & 4.08 \ \pm \ 0.04 & 4.32 \ \pm \ 0.21 \\ {}^{95}\text{Nb} & 4.08 \ \pm \ 0.05 & 6.03 \ \pm \ 0.29 \\ {}^{137}\text{Cs} & 5.81 \ \pm \ 0.05 & 6.03 \ \pm \ 0.29 \\ {}^{137}\text{Cs} & 10.43 \ \pm \ 0.13 & 11.93 \ \pm \ 0.58 \\ {}^{154}\text{Eu} & 1.94 \ \pm \ 0.04 & 2.10 \ \pm \ 0.07 \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | <sup>241</sup> Am     | $3691 \pm 13$                | $3569 ~\pm~ 355$    |
| eq:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphere:sphe                                                                                                                                                                                                                                                                                            | UK-NPL (2007)                                | <sup>60</sup> Co      | $11.72 \pm 0.04$             | $12.3 \pm 0.4$      |
| $\label{eq:constraint} \textbf{UK-NPL} (2010) \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | <sup>90</sup> Sr      | $17.06 \pm 0.03$             | $17.4 \pm 0.8$      |
| $\label{eq:constraint} \textbf{UK-NPL} \left( \textbf{2010} \right) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | <sup>98</sup> Tc      | $6.501 \pm 0.015$            | $6.2 \pm 0.5$       |
| $\label{eq:constraint} \textbf{UK-NPL} \left( \textbf{2010} \right) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | <sup>129</sup> I      | $372 \pm 4$                  | $360 \pm 10$        |
| $\label{eq:second} \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | <sup>134</sup> Cs     | $4.07 \pm 0.03$              | $4.5 \pm 0.3$       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | <sup>137</sup> Cs     | $8.84 \pm 0.06$              | $9.4 \pm 0.4$       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | <sup>238</sup> Pu     | $17.13 \pm 0.08$             | $18 \pm 1$          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | <sup>239</sup> Pu     | $19.48 \pm 0.12$             | $20 \pm 1$          |
| $\begin{array}{ccccc} \textbf{UK-NPL} \mbox{(2010)} & & $^{238}{\rm Pu}$ & $18.08 \pm 0.06$ & $16.32 \pm 1.01$ \\ $^{239}{\rm Pu}$ & $17.29 \pm 0.08$ & $15.84 \pm 0.99$ \\ $^{14}{\rm C}$ & $0.1398 \pm 0.0009$ & $0.16 \pm 0.02$ \\ $^{7}{\rm Be}$ & $4.24 \pm 0.08$ & $4.23 \pm 0.45$ \\ $^{60}{\rm Co}$ & $3.427 \pm 0.008$ & $3.53 \pm 0.17$ \\ $^{95}{\rm Zr}$ & $1.878 \pm 0.015$ & $1.87 \pm 0.12$ \\ $^{95}{\rm Nb}$ & $4.08 \pm 0.04$ & $4.32 \pm 0.21$ \\ $^{134}{\rm Cs}$ & $5.81 \pm 0.05$ & $6.03 \pm 0.29$ \\ $^{137}{\rm Cs}$ & $10.43 \pm 0.07$ & $10.72 \pm 0.50$ \\ $^{152}{\rm Eu}$ & $11.78 \pm 0.13$ & $11.93 \pm 0.58$ \\ $^{154}{\rm Eu}$ & $1.94 \pm 0.04$ & $2.10 \pm 0.07$ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>241</sup> Am     | $10.07 \pm 0.04$             | $9.4 \pm 0.4$       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UK-NPL (2010)                                | <sup>238</sup> Pu     | $18.08 \pm 0.06$             | $16.32 \pm 1.01$    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>239</sup> Pu     | $17.29 \pm 0.08$             | $15.84 \pm 0.99$    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | $^{14}C$              | $0.1398 \pm 0.0009$          | $0.16 \pm 0.02$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | <sup>7</sup> Be       | $4.24 \pm 0.08$              | $4.23 ~\pm~ 0.45$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | <sup>60</sup> Co      | $3.427 \pm 0.008$            | $3.53 \pm 0.17$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | <sup>95</sup> Zr      | $1.878 \pm 0.015$            | $1.87 \pm 0.12$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>95</sup> Nb      | $4.08 \pm 0.04$              | $4.32 \pm 0.21$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>134</sup> Cs     | $5.81 \pm 0.05$              | $6.03 \pm 0.29$     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | <sup>137</sup> Cs     | $10.43 \pm 0.07$             | $10.72 \pm 0.50$    |
| $^{154}$ Eu 1.94 ± 0.04 2.10 + 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | <sup>152</sup> Eu     | $11.78 \pm 0.13$             | $11.93 \pm 0.58$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | <sup>154</sup> Eu     | $1.94 \pm 0.04$              | $2.10 \pm 0.07$     |

Notes

\* IAEA International Atomic Energy Agency reference sample (see report IAEA/AL/026 1990).

#### **QUALITY CONTROL - UKAS ACCREDITATION**

The GAU operates a Quality Management System which is accredited to ISO17025:2005 (which also meets the requirements of ISO 9001). The quality of data produced is constantly monitored in compliance with the strict requirements of this accreditation. Specific methods are also accredited to ISO17025 : 2005 and the GAU is continuing to add methods to the accreditation in accordance with GAU's policy of continuous improvement. Further information regarding GAU's accreditation can be obtained from the UKAS website at <a href="http://www.ukas.com">http://www.ukas.com</a>.



| GLOSSARY OF TERMS                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Activation Products                 | Activation products are the radioactive atoms formed by the absorption of neutrons in and around the reactor core. For example, some of the trace quantities of cobalt and zinc in the water passed through the core become $^{60}$ Co and $^{65}$ Zn.                                                                                                                                                                                                                                                       |  |
| Activity                            | Attribute of an amount of a radionuclide. Describes the rate at which decays occur in it. The unit Becquerel, Bq corresponds to the decay of one radionuclide atom per second.                                                                                                                                                                                                                                                                                                                               |  |
| Alpha particle                      | A particle consisting of 2 protons plus 2 neutrons, which is effectively a helium nucleus. They are emitted generally by heavy radionuclides.                                                                                                                                                                                                                                                                                                                                                                |  |
| Annual limits of intake,<br>ALIs    | These values are calculated from the committed effective dose equivalent, CEDE. They represent activity data that are equivalent to the annual dose limit produced by a particular radioisotope. This is an ICRP concept.                                                                                                                                                                                                                                                                                    |  |
| Becquerel                           | Unit of amount of radioactivity, Bq (see activity). 1 nuclear disintegration per second.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| CED                                 | Committed effective dose. The dose equivalents which relate to a 50 year integration period.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Decay                               | The spontaneous transformation of a radionuclide. The decrease in the activity of a radioactive substance.                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Decay product                       | A nuclide or radionuclide produced by decay. It may be formed directly from a radionuclide or as a result of a series of successive decays through several radionuclides.                                                                                                                                                                                                                                                                                                                                    |  |
| Derived limits                      | See Generalised Derived Limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Dose                                | General term for quantity of radiation. Frequently used for effective dose equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Fallout                             | The global deposition of very fine particulate material following testing of nuclear weapons in the atmosphere during the period 1952-1963 or due to nuclear accidents.                                                                                                                                                                                                                                                                                                                                      |  |
| Fission Products                    | Fission is the division of a nucleus (e.g. $^{235}$ U) into two (usually unequal) radioactive parts. These nuclei are called fission products.                                                                                                                                                                                                                                                                                                                                                               |  |
| Gamma ray                           | A discrete quantity of electromagnetic radiation emitted during radioactive decay that originates from the nucleus.                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Germanium gamma ray<br>Spectrometer | A semiconductor detector that is most often used to measure gamma emitters because it offers the best energy resolution of any device.                                                                                                                                                                                                                                                                                                                                                                       |  |
| Generalised derived<br>limits       | These are general secondary standards, derived from the primary dose limits, which are used as cautionary indicators for materials of environmental significance. They are quoted for specific radionuclides and are expressed in activity units per unit mass, unit volume or unit time. They express a value that will virtually guarantee compliance with legislation dose limits. Fractional GDLs are summed for different radioisotopes to give an assessment of the overall effective dose equivalent. |  |
| Gray                                | A measure of absorbed dose being the amount of energy imparted to unit mass of matter such as tissue. Symbol Gy. $1Gy = 1$ joule per kilogram.                                                                                                                                                                                                                                                                                                                                                               |  |
| Half-life                           | The time taken for the activity of a radionuclide to lose half its value by decay. Symbol t $\frac{1}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ICRP                                | International Commission on Radiological Protection.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Nuclide                             | A species of atom characterised by the number of protons and neutrons and, in some cases, by the energy state of the nucleus.                                                                                                                                                                                                                                                                                                                                                                                |  |
| Radiation                           | The process of emitting energy as waves or particles. The energy thus radiated. Frequently used for ionising radiation in the text.                                                                                                                                                                                                                                                                                                                                                                          |  |
| Radioactive                         | Possessing radioactivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Radioactivity                       | The property of radionuclides of spontaneously emitting ionising radiation normally associated with nuclear decay to another nuclide.                                                                                                                                                                                                                                                                                                                                                                        |  |
| Radon                               | An unstable, chemically inert, radioactive, heavy gas produced during the decay of natural uranium and thorium. Radon and its daughters accumulate in soil and may be drawn into dwellings through slight under-<br>pressure. Radon activity generally represents the main contribution to the dose received by members of the public.                                                                                                                                                                       |  |
| Sievert                             | An S.I. unit of radiation dose.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |